

Outcome Based Education (OBE) Framework

NATURE AND EXTENT OF THE PROGRAM	3
PROGRAM EDUCATION OBJECTIVES (PEO)	4
GRADUATE ATTRIBUTES	5
QUALIFICATIONS DESCRIPTORS	7
PROGRAM OUTCOMES	9
COURSE STRUCTURE, COURSEWISE LEARNING OBJECTIVE, AND COURSE OUTCOMES (COS)	12
PROGRAM OUTCOMES (POS) AND COURSE OUTCMES (COS) MAPPING	172

An engineering graduate skillset requirement is changing with invent of the new technologies. In particular the impact of VLSI design provides a high employability in the industry. VLSI devices are found everywhere around us. We find advanced VLSI chips in our cars, cell phones, household appliances, cameras, medical devices and many other places.

Master of Engineering - ME (VLSI Design) Program is a comprehensive two-year postgraduate program, which aims to provide hands-on experience to prepare industry-ready VLSI design professionals. The program VLSI design helps engineering graduates to specialize in the field of hardware description languages, simulation techniques, hardware verification methods, foundations of low power design, and Universal Verification Methodology (UVM). Students also get to use Python, perl and shell scripting technologies to learn the best practices of design workflow automation. Elective courses let students choose between System on Chip (SoC) design, analog CMOS IC design and Digital Signal Processing. Depending on one's interests, a student may learn either advanced logic synthesis or physical design (back-end).

Master of Engineering - ME (VLSI Design) postgraduate degree would welcome graduates from electrical stream with 50% mark in qualifying exam. Students after successfully completing the program will get career opportunities as a Design Engineer, Verification Engineer, CAD Engineer, Application Engineer.

The overall objectives of the Learning Outcomes-based Curriculum Framework (LOCF) for

Successfully engage in challenging careers with professional approach in the areas of
analog & digital VLSI design and related domains of engineering.
Demonstrate competence in identifying and analyzing technical problems, suggest feasible
and innovative solutions using their core competence in VLSI design and thereby support
the technological growth of the nation.
Impart quality technical education, engage in research and contribute to knowledge
creation and sharing.
Possess analytical, communicative and leadership skills, and demonstrate the ability to
work in multidisciplinary and multi-cultural environments.
Be Self-motivated and remain continuously employable by engaging in lifelong learning.

Acquire in-depth knowledge of specific discipline or professional
area, including wider and global perspective, with an ability to
discriminate, evaluate, analyse and synthesise existing and new
knowledge, and integration of the same for enhancement of
knowledge.
Analyse complex engineering problems critically, apply
independent judgement for synthesising information to make
intellectual and/or creative advances for conducting research in a
wider theoretical, practical and policy context.
Think laterally and originally, conceptualise and solve engineering
problems, evaluate a wide range of potential solutions for those
problems and arrive at feasible, optimal solutions after considering
public health and safety, cultural, societal and environmental
factors in the core areas of expertise.
Extract information pertinent to unfamiliar problems through
literature survey and experiments, apply appropriate research
methodologies, techniques and tools, design, conduct experiments,
analyse and interpret data, demonstrate higher order skill and view
things in a broader perspective, contribute individually/in group(s)
to the development of scientific/technological knowledge in one or
more domains of engineering.
Create, select, learn and apply appropriate techniques, resources,
and modern engineering and IT tools, including prediction and
modelling, to complex engineering activities with an understanding
of the limitations.
Possess knowledge and understanding of group dynamics,
recognise opportunities and contribute positively to collaborative-
multidisciplinary scientific research, demonstrate a capacity for
self-management and teamwork, decision-making based on open-
mindedness, objectivity and rational analysis in order to achieve

common goals and further the learning of themselves as well as
others.
Demonstrate knowledge and understanding of engineering and
management principles and apply the same to one's own work, as
a member and leader in a team, manage projects efficiently in
respective disciplines and multidisciplinary environments after
consideration of economical and financial factors.
Communicate with the engineering community, and with society at
large, regarding complex engineering activities confidently and
effectively, such as, being able to comprehend and write effective
reports and design documentation by adhering to appropriate
standards, make effective presentations, and give and receive clear
instructions.
Recognise the need for, and have the preparation and ability to
engage in life-long learning independently, with a high level of
enthusiasm and commitment to improve knowledge and
competence continuously.
Acquire professional and intellectual integrity, professional code of
conduct, ethics of research and scholarship, consideration of the
impact of research outcomes on professional practices and an
understanding of responsibility to contribute to the community for
sustainable development of society.
Observe and examine critically the outcomes of one's actions and
make corrective measures subsequently, and learn from mistakes
without depending on external feedback.

1. Demonstrate

- (i) A systematic, extensive, coherent knowledge and understanding of an academic field of study as a whole and its applications, links to related disciplinary areas/subjects of study; including a critical understanding of the established theories, principles, concepts, and of a number of advanced, emerging issues in the field of VLSI;
- (ii) Procedural knowledge that creates different types of professionals related to the design, fabrication, testing, verification, including research and development, teaching, government and public service.
- (iii) Professional and communication skills in the domain of electronics, IC fabrication, testing, verification, including a critical understanding of the latest developments, and an ability to use established techniques in the domain of VLSI.
- Demonstrate comprehensive knowledge about materials, including current research, scholarly, and/or professional literature, relating to essential and advanced learning areas pertaining to the VLSI field of study, techniques and skills required for identifying problems and related issues.
- Demonstrate skills in identifying information needs, collection of relevant quantitative and/or qualitative data drawing on a wide range of sources, analysis and interpretation of data.
- Methodologies as appropriate to the subject(s) for formulating evidence based solutions and arguments
- 5. Use knowledge, understanding and skills for critical assessment of a wide range of ideas and complex problems and issues relating to the chosen field of study.

- Communicate the results of studies undertaken in an academic field accurately in a range of different contexts using the main concepts, constructs and techniques of the VLSI studies.
- 7. Address one's own learning needs relating to current and emerging areas of study, making use of research, development and professional materials as appropriate, including those related to new frontiers of knowledge.
- 8. Apply one's disciplinary knowledge and transferable skills to new/unfamiliar contexts and to identify and analyse problems and issues and seek solutions to real-life problems.

Acquire in-depth knowledge of VLSI domain, with an ability to
discriminate, evaluate, analyze, synthesize the existing and
new knowledge, and integration of the same for enhancement
of knowledge.
Analyze complex VLSI Eco System critically, apply independent
judgement for synthesizing information to make intellectual
and/or creative advances for conducting research in a wider
theoretical, practical and policy context.
Think laterally and originally, conceptualize and solve VLSI
Design problems, evaluate a wide range of potential solutions
for those problems and arrive at feasible, optimal solutions
after considering public health and safety, cultural, societal
and environmental factors in the core areas of expertise.
Extract information pertinent to unfamiliar problems through
literature survey and experiments, apply appropriate research
methodologies, techniques and tools, design, conduct
experiments, analyze and interpret data, demonstrate higher
order skill and view things in a broader perspective, contribute
individually/in group(s) to the development of
scientific/technological knowledge in one or more domains of
engineering.
Create, select, learn and apply appropriate techniques,
resources, and modern engineering and IT tools, including
prediction and modelling, to complex engineering activities
with an understanding of the limitations.

Possess knowledge and understanding of group dynamics,							
recognize opportunities and contribute positively to							
collaborative-multidisciplinary scientific research,							
demonstrate a capacity for self-management and teamwork,							
decision-making based on open-mindedness, objectivity and							
rational analysis in order to achieve common goals and further							
the learning of themselves as well as others.							
Demonstrate knowledge and understanding of engineering							
and management principles and apply the same to one's own							
work, as a member and leader in a team, manage projects							
efficiently in respective disciplines and multidisciplinary							
environments after consideration of economical and financial							
factors							
Communicate with the engineering community, and with							
society at large, regarding complex engineering activities							
confidently and effectively, such as, being able to comprehend							
and write effective reports and design documentation by							
adhering to appropriate standards, make effective							
presentations, and give and receive clear instructions.							
Recognize the need for and have the preparation and ability to							
engage in life-long learning independently, with a high level of							
enthusiasm and commitment to improve knowledge and							
competence continuously.							
Acquire professional and intellectual integrity, professional							
code of conduct, ethics of research and scholarship,							
consideration of the impact of research outcomes on							
professional practices and an understanding of responsibility							
to contribute to the community for sustainable development							
of society.							

Observe and examine critically the outcomes of one's actions
and make corrective measures subsequently and learn from
mistakes without depending on external feedback.

CSE 606	Data Structures	3	-	-	3	EDA 604	Advanced VLSI Design	3	-	-	3
EDA 601	High Level Digital Design	3	-	-	3	EDA 605	Low Power VLSI Design	3	-	-	3
EDA 602	Digital Systems & VLSI Design	3	-	-	3	EDA 606	Universal Verification Methodology	3	-	-	3
EDA 603	Verification	3	-	-	3	EDA 607	Scripting for VLSI	3	-	-	3
	Elective - 1	3	-	-	3		Elective - 2	3	-	-	3
CSE 606L	Data Structures Lab	-	-	3	1	EDA 604L	Advanced VLSI Design Lab	-	-	3	1
EDA 601L	High Level Digital Design Lab	-	-	3	1	EDA 605L	Low Power VLSI Design Lab	-	-	3	1
EDA 602L	Digital Systems & VLSI Design Lab	-	-	3	1	EDA 606L	Universal Verification Methodology Lab	-	-	3	1
EDA 603L	Verification Lab	-	-	3	1	EDA 607L	Scripting for VLSI Lab	-	-	3	1
	Elective - 1 Lab	-	-	3	1		Elective - 2 Lab	-	-	3	1
EDA 695	Mini Project - 1	-	-	4	-	EDA 696	Mini Project -2	-	-	-	4
EDA 697	Seminar - 1	I	-	1	-	EDA 698	Seminar - 2	-	-	-	1

IOT 799	Project Work	25
		75

EDA-608	System on Chip Design	CSE-615	System Software
EDA-609	CAD for VLSI	CSE-631	IT Project Management
ESD-603	Digital Signal Processing	EDA-610	Physical Design
		EDA-611	Advanced Logic Synthesis
		EDA-612	Formal Methods
			Wireless Communications and
		EDA-613	Antenna Design
		EDA-614	Machine Learning for VLSI Design
		ENP-601	Entrepreneurship

EDA-608L	System on Chip Design Lab	CSE-615L	System Software Lab
EDA-609L	CAD for VLSI Lab	CSE-631L	IT Project Management Lab
ESD-603L	Digital Signal Processing Lab	EDA-610L	Physical Design Lab
		EDA-611L	Advanced Logic Synthesis Lab
		EDA-612L	Formal Methods Lab
		EDA-613L	Wireless Communications and
		EDA-013L	Antenna Design Lab
		EDA-614L	Machine Learning for VLSI Design
		EDA-014L	Lab
		ENP-601L	Entrepreneurship Lab

				Mast	ter of Er	ngineeri	ng (ME)	– VLSI De	esign			
	CSE 6	06										
	202	0-2021				First Ye	ar, Seme	ester 1				
						C Pr	ogrammi	ing				
	1. This course introduces students to elementary data structures and de											
	of	of algorithms.										
		2. Students learn how to design optimal algorithms with respect to time space										
			learn h	ow to	implem	ent link	: list, sta	ck, queu	es, searc	hing and		
	SOI	ting te	chnique	es, sets	, trees a	and gra	ohs.					
	4. Stu	idents l	earn h	ow to c	organise	the co	de and w	rite test	cases.			
	On suc	cessful	compl	etion o	f this co	ourse, s	udents v	vill be ab	le to			
	Analys	e vario	us algo	rithms								
	Illustra	ite prog	grams f	or impl	ementa	tion of	linear da	ta struct	ure like li	nked list,		
	stack,	queue a	and do	uble lin	ked list							
	Experi	ment p	rogram	s for so	orting a	nd sear	ching					
	Design	progra	ams for	' imple	mentat	ion of r	ion-linea	r data st	ructure l	ike trees		
	and gr	aph.										
COs PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11		
CO 1 *			*									
CO 2 *	*				*							
CO 3 *					*							
CO 4 *	*				*							
Cantant									•			
Content Competencies												

Algorithm Specification, Performance	1. Define algorithms (C1)
Analysis .	2. Analyse algorithms. (C4)
Analysis of Recursive Programs, Solving	1. Define recursive programs (C2)
Recurrence Equations, General	2. Design simple recursive programs (C6)
Solution for a large class of	Solve recurrence relations (C6)
Recurrences .	
Implementation of Lists, Stacks,	1 Design singly linked list (C6)
Implementation of Lists, Stacks, Queues	 Design singly linked list (C6) Design doubly linked list(C6)
Queues	 Design doubly linked list(CO) Explain the concepts of array-based stacks (C2)
	 Explain the concepts of pointer-based stacks (C2) Explain the concepts of pointer-based stacks
	(C2)
	Design and implement Queues. (C6)
Quick sort, Heap sort, Merge sort,	1. Develop algorithm for insertion sort, bubble
Binary search, linear search, Fibonacci	sort and selection sort. (C6)
search	2. Develop and analyse algorithm for quick sort
	(C6)
	3. Develop and analyse algorithm for heap sort (
	C6)
	4. Develop and analyse algorithm for merge sort
	(C6)
	5. Design and analyse algorithms for binary,
	linear and Fibonacci search (C6)
Introduction to Sets, A Linked- List	1. Develop data structures for sets (C6)
implementation of Set, The Dictionary,	2. Design a linked list-based implementation of
The Hash Table Data Structure	sets (C6)

^{(SP} IRED BY ^(S) (Deemed to b	be Univ	ersity under Section 3 of the UGC Act, 1956)
	3.	Design a Dictionary (C6)
	4.	Design Data structure for hash table (C6)
Basic Terminology, Implementation of	1.	Examine the concepts of trees. (C3)
Trees, Binary Trees, Binary Search Trees	2.	Design and implement general trees (C6)
	3.	Design and implement binary trees (C6)
	4.	Design and implement binary search trees (C6)
Basic definitions, Representation	of	1. Define graphs (C6)
Graphs, Minimum Cost Spanning Tre	ee,	2. Design data structure for graphs (C6)
Single Source Shortest Paths, All-Pa	irs	3. Formulate an algorithm to solve minimum
Shortest Path		cost spanning tree(C6)
		4. Formulate an algorithm to solve Single
		source shortest path (C6)
		5. Formulate an algorithm to solve All- pair
		shortest path(C6)

Learning strategy	Contact hours	Student learning
		time (Hrs)
Lecture	30	60
Quiz	02	04
Small Group Discussion (SGD)	02	02
Self-directed learning (SDL)	-	04
Problem Based Learning (PBL)	02	04
Case Based Learning (CBL)	-	-
Revision	02	-
Assessment	06	-

Г

Internal practical Test					Session	al examination		
Theory Assignments					End ser	nester examination		
Lab Assignment & Viv	а				Viva			
Nature of assessment		CO 1	CO 2	CO 3		CO 4		
Sessional Examination	ו 1	*	*					
Sessional Examination	ו 2		*	*		*		
Assignment/Presenta	tion	*	*	*		*		
End Semester Examin	ation	*	*	*		*		
	• End	l-Semester	⁻ Feedbad	:k				
	1. "Introdu	uction to A	lgorithm	s" Thor	nas H. C	ormen, Charles E.		
	Leiserson, Ronald L. Rivest.							
	2. "Data Structures& Algorithms" Aho, Hopcroft and Ulmann							
	3. "Data structures and algorithm analysis in C" Mark Allen Weiss							

					Mast	er of Er	igineeri	ng (ME)	– VLSI De	sign		
					High I	Level Dig	gital Des	ign				
	: EDA-601											
		2020-2021First Year, Semester 1										
		This Course provides insight on										
		1. To understand number representation and conversion between										
		different representation in digital electronic circuits.										
		2. To analyze logic processes and implement logical operations using										
	combinational logic circuits.											
	3. To understand characteristics of memory and their classification.											
		4.				-	-		iits and to	analyze se	equential	
		_	-			state m			_ .			
		5.				•	-			PLA, PAL, C	PLD and	
				-		-	-	_	ystemVer	-		
		6.	To und	derstan	d the A	IMBA DI	us proto	col and	types of k	ouses		
		On suc	cessful	comple	etion o	f this co	ourse, st	udents	will be abl	e to		
		Develo	p a dig	ital logi	ic and a	pply it	to solve	real life	problems	5.		
		Analys	e, desig	gn and i	implem	ent cor	nbinatio	onal, sec	uential lo	gic circuits		
		Discuss	s differ	ent sen	nicondu	uctor m	emories	5.				
		Analys	e digita	l syster	n desig	n using	PLD.					
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	
CO 1		*										
CO 2			*									
CO 3	*											
CO 4	*											
	1	1	1	L	L	1	1	1		I	1	

Content	Со	mpetencies
Review of Digital Design	1.	Discuss number system in digital design. (C2)
	2.	Discuss Boolean algebra in digital design. (C2)
	3.	Optimize the Boolean expression using k-maps.
		(C3)
Arithmetic Circuits - Full adder, Serial	1.	Design a combinational circuit for a given
Adder, Adder/Subtractor, Ripple Carry		boolean expression (C5).
Chain, Carry Look-Ahead	2.	Discuss different types of combinational circuits
adder, Carry Select Adder, ALU, Parity		like adders, multipliers and CPLD's. (C2)
Generator, Comparator, Multiplier.		
PLA, PAL, PLD, CPLD, ROM, FPGA –		
Introduction		
Flip-flops, registers, counters.	1.	Design sequential circuit using Flip-flops (C5)
Introduction to FSMs, capabilities,	1.	Discuss Mealy and Moore machines (C2)
minimization and transformation of	2.	Design sequential circuit using Mealy and Moore
sequential machines, Synchronous and		machines (C5)
asynchronous FSMs, Mealy and Moore		
machines, State assignment of		
synchronous sequential machines,		
Structure of sequential machines,		
Verification and testing of sequential		
circuits		
Verilog / System Verilog for design	1.	Differentiate Verilog and System Verilog. (C4)
Introduction FPGA	2.	Explain FPGA architecture. (C2)

Spartan III Architecture	3.	Discuss Spart	an III Architectu	ıre. (C2)
	1			
FIFO Design [SNUG Paper], Cordic	1.	Explain the w	vorking of FIFO (C2)
Algorithm [IEEE Paper]	2.	Explain cordi	c algorithm (C2)	
Floating Point Arithmetic Blocks [IEEE	3.	Discuss differ	ent floating-po	nt arithmetic
Paper]: Floating point Addition,		operations (C	2)	
Floating point, subtraction, Floating				
point Multiplication, Floating point				
Division				
	<u> </u>			
AMBA Bus Specification [ARM	1.	Discuss differ	rent component	s of AMBA bus (C2)
Specification]	2.	Explain AHB a	and APB (C2)	
Learning strategy		Contac	t hours	Student learning
				time (Hrs)
Lecture		3	0	60
Quiz		0	2	04
Small Group Discussion (SGD)		0	2	02
Self-directed learning (SDL)		-	-	04
Problem Based Learning (PBL)		0	2	04
Case Based Learning (CBL)				-
Revision		0	2	-
Assessment		06		-
	\uparrow			
	_	Т		
· · · · · · · · · · · · · · · · · · ·			Sessional exami	nation
Internal practical Test	Theory Assignments			

Lab Assignment & Viva	Viva								
Nature of assessment	CO 1	CO 2	CO 3	CO 4					
Sessional Examination 1	*	*							
Sessional Examination 2			*	*					
Assignment/Presentation				*					
End Semester Examination	*	*	*	*					
• Enc	l-Semeste	r Feedback							
 "System Peter Flake SNUG Pa IEEE Pap 	 End-Semester Feedback "An Engineering Approach to Digital Design", Flectcher "SystemVerilog for design by Stuart Sutherland", Simon Davidmann Peter Flake SNUG Paper [freely available] IEEE Paper [MU campus available] ARM Specification. 								

					Mast	ter of Er	ngineeri	ng (ME)	– VLSI De	esign	
					Digit	al Syste	ms & V	LSI Desig	n		
		EDA 6	02								
		2020-2021 First Year, Semester 1									
		This Co	ourse p	rovides	insigh [.]	t on					
		On suc	cessful	compl	etion o	f this co	ourse, st	cudents v	vill be ab	le to	
		Under	stand	static	and d	ynamic	behav	iour of	MOSFE	Ts (Meta	l Oxide
		Semico	onducto	or Field	Effect	Transist	ors) an	d the sec	ondary e	ffects of	the MOS
		transis	tor mo	del.							
		Design	and t	est sta	atic CN	1OS co	mbinati	onal and	d sequer	ntial logi	c at the
		transis	tor leve	el, inclu	iding m	nask layo	out.				
		To pro	vide ex	kperier	ice des	igning	integrat	ed circu	its using	Compute	er Aided
		Design	(CAD)	Tools							
		Descril	be the ${a }$	genera	proces	ssing te	chnolog	ies of CN	/IOS integ	grated cir	cuits.
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1		*									
CO 2	*	*	*								
CO 3				*							
CO 4			*								
	1										
Conte	nt					Compet	encies				

Ideal I-V Characteristics, C-V Characteristics, CMOS inverter – DC characteristics, , Noise Margin, Static load MOS inverters, NELS, NELT, HMOS, Pass transistor, Transmission gate, tristate inverter, MOSFET Models, Non ideal I-V effects.	 Illustrate basic working of MOS transistors (C4) Design construction of basic building block (C5)
Combinational and Sequential Circuit Design, Basic physical design of simple gates, CMOS logic structures (Dynamic CMOS Logic, C2MOS Logic, CMOS and NP Domino Logic).	 Illustrate development basic logic gates using MOSFET (C4) Design Construction of static and dynamic logic circuits (C5)
Resistance estimation, Capacitance estimation, delay time calculation, principles of modeling the gate, Switching characteristics, CMOS gate transistor sizing, Power dissipation, Scaling principles.	 Analysis of MOS circuits – RLC estimation (C4) Estimation of power dissipation in MOS circuits (C6)
Data path operations - Adder, Comparator, Counter, Semiconductor memory elements - SRAM, DRAM	1. Design simple CMOS subsystem (C5)
Wafer Formation, Photolithography, Well and Channel Formation, Silicon Dioxide (SiO2), Oxidation, Isolation Gate Oxide, Gate and Source/Drain	 Demonstrate basic CMOS process technologies (C3) Demonstrate design rules and layout techniques for simple digital CMOS circuits (C3)

Formations, Contacts	and					
Metallization, Passivation, SOI.						
Design Rule Background, Micror	n and	1. Demons	tra	te lay	out desi	gn rules (C3)
Lambda Design Rules						
Antenna Rules, Layer Density	Rules,	1. Demon			various	manufacturing
Resolution Enhancement Rules.		issues (C3)			
	·					
Learning strategy		Conta	ct h	ours		Student learning
						time (Hrs)
Lecture		3	30			60
Quiz		02				04
Small Group Discussion (SGI	C)	02				02
Self-directed learning (SDL)	-				04
Problem Based Learning (PB	L)	02				04
Case Based Learning (CBL)		-				-
Revision		02				-
Assessment		06				-
	I				I	
Internal practical Test				Sessi	ional exa	amination
Theory Assignments				End	semeste	r examination
Lab Assignment & Viva				Viva		
Nature of assessment	CO 1	CO 2	CC	D 3	CO 4	
Sessional Examination 1	*	*				

Sessional Examination 2	2			*	*	
Assignment/Presentation	on				*	
End Semester Examinat	ion	*	*	*	*	
•	e End	-Semester I	eedback	1		
	1. "	CMOS digit	al integrated	d circuits	analysis and design", Kang	
	Sun	g Mo and L	eblebici Yusı	uf,		
	Mc	Graw Hill, 19	999.			
	2. '	2. "Principles of CMOS VLSI Design: A systems perspective",				
	2nd	2nd Edition, Neil H. E. Weste,				
	Kan	nran Eshrag	hian, Addiso	on Wesley	y, 1999.	
	3. '	3. "CMOS VLSI Design: A circuits & systems perspective", 3rd				
	Edit	ion, Neil H.	E. Weste, D	avid		
	Harris, Addison Wesley, 2007.					
	4.	1. "Microchip Fabrication", by Peter Van Zant, 5th Edition,				
	Mc	nternational	Edition.			

					Mast	er of Er	ngineeri	ing (ME)	– VLSI De	esign				
					Verif	ication								
	E	DA 603												
		2020-2	2021			F	irst Yea	r, Semest	er 1					
		This Co	urse pr	ovides	insight	on								
		1.	To stu	dy the l	basic co	oncepts	of syst	em verilo	og.					
		2.	To und	lerstan	d differ	ent kin	ds of da	ata types						
		3. To Differentiate between HDL and HVL.												
		4. To Study the basic concepts of OOPs.												
		5. To understand the different components of verification environment.												
		On successful completion of this course, students will be able to												
		Design	a scena	ario for	Verific	ation o	f a DUT	in Syster	m Verilog	3.				
		Analyze	e the us	sefulne	ss of a	driver, ı	monito	r, checke	r, test ca	ses in a v	erification			
		enviror	nment.											
		Explain	the o	concept	t of ra	andomiz	zation	and its	importa	nce in v	erification			
		covera	ge in a	bigger	design.									
		Design	test be	nch to	verify t	the fund	tionalit	y of a de	sign.					
		Design	a VIP fo	or an IF	o as a p	roject.								
COs P	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11			
CO 1 *	:		*											
CO 2		*												
CO 3 *	:													
CO 4			*	*										
CO 5			*	*										
I					I	I	I	I		1				

Content	Competencies
Verification Productivity, Verification,	1. What is verification? Differentiate basic
Design for Verification, Methodology.	V design and modified V design (C4)
Formal Verification, Property Based	1. Explain different types of verification
Verification, Functional Verification, Rule Checking-Linting, Black Box Verification, White Box Verification,	(C2)
Grey Box Verification.	
Planning Process, Response Checking	 Explain verification planning process (C2)
Specifying Assertions, Assertions on	1. What is assertion? Explain different
Internal DUT Signals, Assertions on	types of assertions in System Verilog.
External Interfaces, Assertion Coding	(C2)
Guidelines, Reusable Assertion-Based,	
Qualification of Assertions.	
Testbench Architecture, Simulation	1. Explain components of verification
Control, Data and Transactions,	environment. (C2)
Transactors, Transaction-Level	2. Explain data and transactions. (C2)
Interfaces, Timing Interface, Callback	3. Explain transaction-level interfaces and
Methods, Ad-Hoc Testbenches, Legacy	timing interfaces. (C2)
Bus-Functional Model.	4. Explain Ad-hoc testbenches and Bus Functional Models. (C2)

Generating Stimulus, Controlling	1.	Explain self-checking structures in
Random Generation, Self-Checking		verification (C2)
Structures.		
Coverage Metrics, Coverage Models,	1.	Explain coverage metrics and coverage
Functional Coverage Implementation,		models in System Verilog. (C2)
Feedback Mechanisms		
Model Checking and Assertions,	1.	Explain how assertions can be used
Assertions on Data		during formal verification (C2)
Extensible Verification Components,	1.	Explain system-level verification
XVC Manager, System-Level		environment. (C2)
Verification Environments, Verifying		
Transaction-Level Models, Hardware-		
Assisted Verification.		
Software Test Environments, Structure	1.	Explain software test environment and
of Software Tests, Test Actions.		test actions (C2)
Introduction, Validation Activities,	1.	Computing post-silicon validation (C3)
Planning for Post-Silicon Readiness,	2.	Explain the debug infrastructure for
Post-Silicon Debug Infrastructure,		post-silicon validation (C2)
Generation of Tests, Post-Silicon		
Debug.		

Learning strategy			Contact h	ours	Student learning		
					time (Hrs)		
Lecture			30		60		
Quiz			02		04		
Small Group Discussion (SGD)			02		02		
Self-directed learning (SDL)			-		04		
Problem Based Learning (PBL)			02		04		
Case Based Learning (CBL)			-		-		
Revision			02		-		
Assessment			06		-		
Internal practical Test Theory Assignments					examination ster examination		
Lab Assignment & Viva				Viva			
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5		
Sessional Examination 1	*	*					
Sessional Examination 2			*	*			
Assignment/Presentation					*		
End Semester Examination	*	*	*	*	*		
• Er	d-Semes	ter Feed	back	1			
1. Jar	nick Bei	rgeron,	Verificati	on methodo	ology manual for		
SystemVe		-					
		-	iting Tes	tbenches usi	ng System Verilog,		

3. William K. Lam, Hardware Design Verification - Simulation and
5. William R. Lam, Hardware Design Vermeation Simulation and
Formal Method Based Approaches.
4. Pallab Dasgupta, A Roadmap for Formal Property Verification,
Springer.
5. Prabhat Mishra, Farimah Farahmandi, Post-Silicon Validation and
Debug, Springer.

					Master of Engineering (ME) – VLSI Design									
					System	n-on-Ch	ip Desigr							
		EDA-6	808											
		2020	0-2021		First Year, Semester 1									
						Basic knowledge of Computer								
							C program	nming la	nguage					
		This Co	ourse p	rovides	insight c	on								
			1. Th	e conce	ept of sys	stems a	pproach	towards	electron	ic system	level			
			flo	W										
			2. Sys	stem o	n chip ai	rchitect	ure with	data pro	ocessing,	data sto	orage,			
			со	mmuni	cations a	ind cont	rol mech	nanisms						
			3. Th	e conce	ept of va	rious pr	ocessor a	architect	ures					
			4. Va	rious n	nemory a	rchitect	ures							
			5. Co	ncept	of buses,	layered	archited	ture and	network	on chip				
			6. 3-l	D graph	nics proce	essors a	nd unive	rsal seria	l bus					
					etion of t		-							
		Descri	oe syst	em ar	chitectur	e, iden	tify hard	ware so	ftware c	o-design	, give			
		examp	les of c	o-desig	gn space,	explain	specifica	ation & m	odelling	, pre-part	tition,			
		partitio	on, ana	lyse p	ost-partit	tion and	alysis, de	escribe h	ardware	and sof	tware			
		implen	nentati	on										
		Review	v the p	orocess	ors and	its mic	cro-archi	tecture a	and basi	c elemer	nts in			
		instruc	tion ha	ndling,	recogniz	ze robus	st proces	sors						
		Descri	be on	and of	f-die me	mories,	explain	memori	es in sy	stem on	chip,			
		compa	re mer	nory sy	vstems, c	ache m	emory, r	nodel m	emories,	intercon	nects			
	in system on chip, explain network on chip													
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11			

	(Deemed to	be University i										
CO 2 *												
CO 3 * *												
Content		Сотре	Competencies									
Introduction to System A	pproach:	1.	Explain system on chip (C2)									
System Architecture of	overview,	2.	Describe hardware software co-design (C2)									
Components of the	System,	3.	Explain driving factors of co-design (C2)									
Introducing Hardware/	Software											
Codesign, The Driving Fa	ctors of											
Hardware/Software Design	n, The											
Hardware-Software Codesign	space.											
		I										
Specification and Modelir	ng, Pre-	1.	Explain specification and modelling (C2)									
Partitioning Analysis, Partition	ing,	2.	Describe pre-portioning analysis (C2)									
Post-Partitioning Analysis and	d Debug,	3.	Defend partition steps (C2)									
Post-Partitioning Ve	rification,	4.	Analyse post-partition and verification(C4)									
Hardware Implementation,		5.	Explain hardware and software									
Software Implementation.			implementation (C2)									
		1										
Heterogeneous & Distribut	ed Data	1.	Describe Heterogeneous & Distributed									
Processing, Heterogeneo	us &		Data Processing (C2)									
Distributed Data Commu	nications,	2.	Describe Heterogeneous & Distributed									
Heterogeneous & Distribut	ed Data		Data Communications (C2)									
Storage, Hierarchical Control.		3.	Explain Heterogeneous & Distributed Data									
			Storage (C2)									
		4.	Discuss Hierarchical Control (C2)									

Processors: Introduction to	1. Explain processors in system on chip (C2)
Processors, Processor Selection for	2. Identify processor Selection for system on
SOC, Basic Concepts in Processor	chip (C4)
Architecture, RISC Pipeline, Basic	3. Describe basic concepts in processor
Concepts in Processor	architecture (C5)
Microarchitecture, Basic Elements in	4. Describe RISC pipeline architecture (C1)
Instruction Handling, Buffers,	5. Recognize basic elements in instruction
Branches, Robust Processors	handling (C1)
	6. Explain buffers, branches and robust
	processors (C2)
Introduction, Overview of SOC Internal	1. Describe memories (C2)
and External Memories, Scratchpads	2. Compare On and Off die memories (C4)
and	3. Model memories (C4)
Cache Memory, Cache Organization,	
Cache Data, Write Policies, Strategies	
for Line Replacement at Miss Time,	
Other Types of Caches, Split I- and D-	
Caches and the Effect of Code Density,	
Multilevel	
Caches, Virtual-to-Real Translation,	
SOC (On-Die) Memory Systems, Board-	
Based (Off-Die) Memory systems,	
Simple DRAM and the Memory Array,	
Models of Simple Processor-Memory	
Interaction.	
Introduction, Overview of Interconnect	1. Define buses in system on chip (C1)
Architectures, Bus Architecture, SOC	2. Give examples of system on buses (C2)

(Deemed to be University under Section 3 of the UGC Act, 1956)

Standard Buses, Analytic Bus Models,	3.	Analyse bus models (C	24)		
Beyond the Bus (NOC with Switch	4.	Explain network on ch	ip (C2)		
Interconnects), Some NOC Switch					
Examples, Layered Architecture and					
Network Interface Unit, Evaluating					
Interconnect Networks.					
Introduction, Synchronization		Identify synchronization			
Schemes, Memory-Mapped Interfaces,	2.	Explain memory-map	ped interfaces (C2)		
Coprocessor Interfaces, Custom-	3.	Describe coprocessor	interfaces (C2)		
Instruction Interfaces.	4.	Explain custom-instru	ction interfaces (C2)		
3-D Graphics Processor / Software	1	Explain 3-D graphics	processor/software		
Defined Radio with 802.16, Universal		defined radio with 80	-		
Serial Bus	bus (C2)				
Learning strategy		Contact hours	Student learning		
			time (Hrs)		
Lecture		30	60		
Quiz		02	04		
Small Group Discussion (SGD)		02	02		
Self-directed learning (SDL)		-	04		
Problem Based Learning (PBL)		02	04		
Case Based Learning (CBL)		-	-		
Revision		02	-		
Assessment		06	-		

Internal practical Test	Sessional examination							
Theory Assignments	End semester examination							
Lab Assignment & Viva	Viva							
Nature of assessment	CO 1	CO 2	CO 3					
Sessional Examination 1	*							
Sessional Examination 2		*	*					
Assignment/Presentation			*					
End Semester Examination	*	*	*					
• Enc	l-Semeste	r Feedba	nck					
1. Michae	l J. Flynn ,	Wayne	Luk, "Computer System Design System-					
On-Chip", .	John Wiley	/ & Sons	, Inc., Publication, 2011.					
2. Brain	Bailey, G	rant Ma	rtin, Andrew Piziali, "ESL Design and					
Verification	n: A	Prescrip	tion for Electronic System-Level					
Methodolo	ogy", Morg	gan Kauf	mann Publication, 2007.					
3. Pati	rick R.	Schaum	ont, "A Practical Introduction to					
Hardware/	Hardware/Software Codesign", Springer, 2010.							
4. Don Ar	nderson, l	JSB Syst	em Architecture (USB 2.0), Mindshare,					
Inc., 2001.								

					Mast	Master of Engineering (ME) – VLSI Design								
					CAD	CAD for VLSI								
		EDA-6	09											
		2020)-2021				First Yea	ar, Semes	ter 1					
								underst	-		Design,			
		T : 0		• •	-		n, Graph	theory,	Data str	uctures				
		This Co	•		-	s on								
		1.	VLSI de	esign fl	lows									
		2. VLSI design automation at various stages of IC design, verification												
		testing												
		3.	Variou	is EDA t	cools us	ed in VI	SI desig	gn						
		4.	VLSI d	esign p	roblem	s and de	evelopir	ng CAD to	ols to ac	dress th	ese			
		5.	Algorit	hms us	sed in tl	he CAD	tools fo	r VLSI des	ign and	optimiza	tion			
		On successful completion of this course, students will be able to												
		Unders	stand V	LSI des	ign flov	VS								
		Apply o	design a	automa	ition to	ols used	l in VLSI	design						
		Infer in	nportar	nt desig	n prob	lems in '	VLSI and	d develop	ing tool	s to addre	ess them			
		Unders	stand v	arious a	algorith	ms used	l in EDA	tools and	l using t	hem for \	/LSI CAD			
		tool de	velopn	nent										
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11			
CO 1	*													
CO 2			*											
CO 3		*		*										
CO 4					*									
	1	1	1	1	1	1	1	1	1	1	1			
Conter	nt				0	Compete	encies							
	nt					Compete	encies							

Design rules, symbolic layout,	At the end of the topic student should be able to:
Algorithms for layout compaction.	1. Explain the basics of layout and relevant
	tools (C2)
Circuit representation, Wire length	1. Model circuits using graphs (C4)
estimation, Types of placement	2. Recognize placement and partitioning stages
problems, Placement algorithms,	apply algorithms to solve problems in those tasks
and partitioning algorithms	(C2)
Floor planning concepts, Shape	1. Describe role of floor planning and
Functions and Floor plan sizing	optimization (C2)
Global routing, algorithms for global	
routing, local routing, types of local	1. Apply Mapping of routing problems into
routing problems, Area Routing,	graph domain (C3)
algorithms for area routing, Channel	2. Illustrate channel routing problems and
routing, algorithms for channel routing.	apply algorithms to solve routing
	problems (C3)
Introduction to Combinational logic	1. Apply ITE algorithm in logic synthesis (C3)
synthesis, Binary decision diagrams, ITE	
& ITE-CONTSNT algorithm in two level	
logic synthesis	
Need for high-level logic synthesis,	1. Describe of high level synthesis (C2)
Design representation and	2. Illustrrate design reperesentations (C3)
Transformations, Partitioning,	3. Formulate synthesis poblems – Partitioning,
Scheduling, Allocation.	scheduling, allocation (C5)

(Deemed to be University under Section 3 of the UGC Act, 1956)

	4. Employ standard algorithms to solve high lev syntheis tasks (C3)							
Learning strategy		Contac	t hours	Student learning				
				time (Hrs)				
Lecture		3	0	60				
Quiz		0	2	04				
Small Group Discussion (SG	D)	0	2	02				
Self-directed learning (SDL)		-	04				
Problem Based Learning (PB	BL)	0	2	04				
Case Based Learning (CBL)		-	-	-				
Revision		0	2	-				
Assessment		0	6	-				
Internal practical Test			Sessior	nal examination				
Theory Assignments			mester examination					
Lab Assignment & Viva			Viva					
Nature of assessment	CO 1	CO 2	CO 3	CO 4				
Sessional Examination 1	*							
Sessional Examination 2		*						
Assignment/Presentation			*	*				
End Semester Examination	*	*	*	*				
• End	-Semeste	r Feedback						
1. "Graph	theory",	Narsingh Deo	(Prentice-H	all of India private ltd)				

2. "Graph theory", Gibbons
3. "Algorithms for VLSI Design Automation", Sabih H. Gerez (John
Wiley and Sons)
4. "High Level Synthesis -Introduction to chip and System Design",
Daniel Gajski, Nikil Dutt, Allen Wu, Steve Lin (Kluwer Academic
Publishers)
5. "Logic synthesis and verification algorithms", Gary D. Hachtel,
Fabio Somenzi (Kluwer Academic Publishers)
6. "Computer aided logical design with emphasis on VLSI ",
Frederick J Hill, Gerald R. Peterson (john Wiley & sons)

					Mast	er of Er	igineeri	ng (ME) ·	– VLSI De	esign					
					Digita	al Signa	l Proces	sing							
		ESD-60	3												
		2020 -	2021			First Year, Semester 1									
						Knowledge of Signals and Systems and									
							edge of	MATLAB							
		This Co	ourse p	rovides	insight	t on									
		1. Un	derstar	nding o	f basics	of Sign	al and S	Systems a	as pre-re	quisite.					
		2. Understanding the concepts of Fast Fourier Transforms.													
		3. Learning hardware implementation of systems.													
		4. Learning FIR and IIR Filter Designs.													
		5. Lea	arning o	concept	ts of m	ulti-rate	signal	processir	ng in the	form of	sampling				
		rat	e conv	version	, struc	tures o	of sam	oling rat	e conve	erters ar	nd some				
		арі	olicatio	ns of sa	ampling	g rate co	nverte	rs							
		6. Un	derstar	nding t	hree o	ptimum	Weine	er filters	, adaptiv	ve algori	thm and				
		tra	nsform	ing We	einer filt	ers in t	o adapt	ive filter:	5						
		7. Un	derstar	nding	archite	cture,	memo	ry mana	agement	and p	ipelining				
				_				hrough s	-						
		On suc	cessful	compl	etion o	f this co	urse, st	udents v	vill be ab	le to					
		Analys comple		t Four	ier Tr	ansforn	ו (FFT) algorit	thms or	ר comp	utational				
		Descril	be the s	structu	res for	IIR and	FIR filte	rs.							
		Interpr	et Mul	tirate S	ignal P	rocessir	ng and A	Adaptive	Filters.						
		Explair	n archi	tecture	e, men	nory m	anagen	nent and	d pipelir	ning con	cepts of				
		Genera	al and T	MS320)C67XX	Digital	Signal P	rocessor	•						
<u> </u>	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11				
COs							107	100	105	1010	/ 0 11				

			"SPIRED 1	1	1	i Onu	ersity und	er section s (of the UGC Ad	<i>a</i> , 175,	0)		
CO 2	*	*	*	*	*								
CO 3		*	*	*									
CO 4	*	*											
		1	1					1		I		1	
Conten	t					Со	mpet	encies					
Introdu	uction	Classifi	ication	of sig	nals	1.	Outl	ine typ	es of sig	gnal	ls and s	ystem. (C1)
and sy	stems,	brief	discuss	ions o	n z-	2.	Sum	marize	z-tran	sfoi	rm, Fo	ourier tr	ansform,
transfo	orm, inv	verse z-	transfo	rm			conv	olutio	n. (C2)				
& Fou	urier	transfo	rm, D	FT, li	near								
convolu	ution u	ising ci	rcular d	convolu	ition								
& DFT													
Radix-2	2 DIT-	FFT A	lgorithr	n, DIF	-FFT	1. Identify Computation complexity of DFT,							
Algorit	hm. As	signme	nts (Pro	oblems).	Introduction to Fast Fourier Transform (FFT)							
						algorithm (C1)							
						2.	2. Describe and Sketch Radix-2 Decimation in						
							Time	e FFT (DIT-FFT) Al	gorithr	n and ar	nalyse its
							computation complexity (C2, C3, C4)						
						3.	3. Describe and Sketch Radix-2 Decimation in						
						Frequency FFT (DIF-FFT) Algorithm and analyse							
							its c	omputa	ation co	mp	lexity (C2, C3, C	4)
	or C+	turo	Direct	Eorm '	9 . 11	1	Lict	Comr	ononto		od in	filtor of	ructures
IIR Filte					-	1.							ructures,
CSOS,			-					•					ween the
FIR Fil													systems
Cascad						(C1, C2)							
structu	res. As	signme	nts (Pro	oblems).	2.	•						ucture –
							Dire	ct Forr	n-I, Dire	ect	Form–	II, Casca	de Form

	1	
		(CSOS), Parallel Form (PSOS) & Transpose of
		structures (C2, C5)
	3.	Explain and construct FIR Filter Structures –
		Direct Form, Cascade form (C2, C5)
	4.	Explain Linear Phase FIR Filter structure:
		Derivation, Frequency Response, Compute
		Computation Complexity and construct with
		number of filter coefficients being even and
		odd. (C3, C5)
	1	
Using Frequency Sampling & Windows	1.	Introduction to Frequency sampling technique
- Assignments (Problems).		design
	2.	Describe Derivation of a Transfer Function for
		the system designed using frequency sampling
		technique when number of samples of impulse
		response / number of point DFT is even or odd.
		Construct hardware for the transfer functions.
		Concept of Comb filter and resonator (C6, C5)
	3.	Sample example to Design and implement FIR
		filter using Frequency Sampling technique to
		meet required impulse response (C5, P4)
	4.	Illustrate Frequency responses of frequency
		selective (LP, HP, BP and BR) filters, concept of
		frequency sampling in the frequency
		responses (C3)
	5.	Sample examples to Design and implement FIR
		filters with ideal frequency response using
		frequency sampling technique (C5, P4)
	6.	Discuss Concept of windowing in the design of
		FIR filter, Concept of Gibb's Phenomenon and

$S_{PIRED BY}$ (Deemed to	be University under Section 3 of the UGC Act, 1956)
	its effect on frequency response, Use of
	window functions to eliminate Gibb's effect
	(C2)
	7. Comparison of performances of filters
	designed with different window functions (C4)
	8. Explain Steps involved in the design of FIR
	filters with ideal frequency response and non-
	ideal frequency response (C2)
	9. Express Impulse responses of frequency
	selective filters (C2)
	10. Sample examples to design ideal and non-ideal
	frequency selective filters using windows. (C5,
	P4)
	I
Butterworth & Chebychev filters design	1. Discuss Concepts of Analog Butterworth LP
using impulse invariance & bilinear	filter, concept of Cut-off frequency, order of
transformation techniques, Design of	the filter, compute poles, pole locations in S-
IIR filter using pole placement	Plane, transfer function (C2, C3)
technique. Assignments (Problems).	2. Explain Design steps of Analog Butterworth LP
	filter (C2)
	3. Explain Chebychev polynomials, their
	properties, Analog Chebychev LP filter
	function, concepts of frequency response,
	order of filter, pole placements of Chebychev
	LP filters on S-Plane, compute poles, Transfer
	function of LP Chebychev filter (C2, C3)
	4. Discuss Concepts of Impulse Invariance
	Transformation, S-Plane to Z-Plane mapping,
	steps in transformation (C2)

5.	Discuss Concepts of Bilinear Transformation,
	frequency warping, pre-warping for the
	purpose of analog filter (Butterworth /
	Chebychev) design (C2)
6.	Sample examples to design Butterworth and
	Chebychev LP filter using impulse invariance
	and bilinear transformations (C5)

Decimation,	Interpolation,	Sampling	7.	Introduction,	need	for	multi-rate	signal
rate conversion by a rational factor,				processing, ex	plain c	oncep	ot of samplin	ng rate
structures, Polyphase filter structures,				conversion (C2	2)			
			-				_	

TimevariantFilterstructure,8.Explain Decimation by an integer factor, blockApplicationofMultiratesignaldiagram, analyse of decimator in time domainprocessing toPhaseShifter, Subbandand frequency domain (C2)codingofSpeechsignal, DigitalFilter9.ExplainInterpolationby an integer factor,

Bank Implementation, QMF Filter bank

block diagram, analyse of interpolator in time domain and frequency domain (C2)

 Explain Sampling rate conversion by a rational factor, block diagram, analyse in time domain and frequency domain (C2)

11. Construct Implementation of Sampling rate converters (C5)

12. Discuss Concepts and construction of Polyphase filter (C2)

13. Construct Time variant Filter (C5)

14. Apply Multi-rate signal processing concept to Phase Shifter, Sub-band coding of Speech signal, Digital Filter bank Implementation, QMF Filter bank. (C3)

1. Outline adaptive filters, some matrix
operation.(C1)
2. Explain Optimal Weiner Filters – Predictive
Configuration, Filter Configuration, Noise
Canceller Configuration (C2)
3. Explain Concept of LMS adaptive Algorithm
(C2)
4. Apply LMS algorithm to the optimal filter
configurations (C3)
1. Discuss Introduction to PDSPs – Multiplier and
Multiplier Accumulator (MAC), Modified Bus
structures and memory access schemes (C2)
2. Explain Concept of Multiple access memory,
Multiported Memory, VLIW architecture (C2)
3. Explain Concept of Pipelining, Special
addressing modes, On-chip Peripherals. (C2)
4. Explain Concepts on Architecture, memory
organization and pipelining of TMS320c67XX

Learning strategy	Contact hours	Student learning
		time (Hrs)
Lecture	30	60
Quiz	02	04
Small Group Discussion (SGD)	02	02
Self-directed learning (SDL)	-	04
Problem Based Learning (PBL)	02	04
Case Based Learning (CBL)	-	-
Revision	02	-

Assessment		06 -				
Internal practical Test			Sessional e	xamination		
Theory Assignments			End semes	ter examination		
Lab Assignment & Viva			Viva			
Nature of assessment	CO 1	CO 2	CO 3	CO 4		
Sessional Examination 1	*	*				
Sessional Examination 2			*			
Assignment/Presentation		*	*			
End Semester Examination	*	*	*	*		
• En	d-Semest	ter Feedback				
1. Sanjith	K Mitra, '	"Digital Signal P	rocessing", McC	Graw Hill Education,		
4 Edition,	July 2013	8.				
2. Oppen	heim and	Schafer, "Digita	al Signal Proces	sing", Pearson, First		
Edition, 19	975.					
3. Romar	ה Kuc, "D	igital Signal Pro	ocessing", McG	raw-Hill Education,		
1988.						
4. Proaki	s and Ma	nolakis, "Digital	Signal Processi	ng", Prentice – Hall,		
Inc., Third						
				on of Digital Signal		
		ce Hall India Lea	-			
		Schaum's Outlin	ne of "Signals	and Systems", 3rd		
Edition, 20				.		
	n Haykins	s, "Signals and	Systems", Wile	ey, Second Edition,		
2002.						

					Maste	er of Eng	gineering	(ME) – VL	SI Desig	n				
						Structur								
	:	CSE 606	L											
		2020-2	2021			F	irst Year,	Semester	[.] 1					
	T							ramming						
		1.	1. This course introduces students to elementary data structures an											
		design of algorithms.												
		2. Students learn how to design optimal algorithms with respect to time												
			and sp	ace										
		3. Students learn how to implement link list, stack, queues, searching												
			and so	rting te	echniqu	ies, sets	s, trees a	nd graph	s.					
		On suc	cessful	comple	etion o	f this co	urse, stu	dents wi	ll be ab	le to				
		Analys	e vario	us algo	rithms.									
		Illustra	te prog	rams fo	or imple	ementa	tion of lir	near data	structi	ure like lir	nked list,			
		stack, d	queue a	and dou	uble lin	ked list								
		Experir	ment p	rogram	s for so	orting ar	nd search	ing						
		Design	progra	ims for	implei	mentati	on of no	n-linear	data st	ructure li	ke trees			
		and gra	aph.											
		Design	the co	de for s	scalabil	ity and	maintain	ability						
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11			
CO 1		*												
CO 2		*	*		*			*						
CO 3		*	*		*			*						
CO 4		*	*		*			*						
CO5:		*	*		*			*						

Content	Competencies							
Implementation of Lists, Stacks,	1. Design and Implement singly linked list (C5)							
Queues	2. Design and Implement doubly linked list (C5)							
	3. Design and Implement array-based stack (C5)							
	4. Design and Implement pointer-based							
	stack(C5)							
	5. Design and Implement array-based							
	queues.(C5)							
	6. Design and Implement pointer-based queues.							
	(C5)							
Quick sort, Heap sort, Merge sort,	1. Design and implement programs for insertion							
Binary search, linear search, Fibonacci	sort, bubble sort and selection sort. (C5)							
search	2. Design and implement programs for quick sort							
	(C5)							
	3. Design and implement programs for heap							
	sort(C5)							
	4. Design and implement programs for merge							
	sort (C5)							
	5. Design and implement programs for binary,							
	linear and Fibonacci search (C5)							
Introduction to Sets, A Linked- List	(C2, C3, C5, C8)							
implementation of Set, The Dictionary,	1. Experiment a program for array-based							
The Hash Table Data Structure	implementation of sets (C4)							
	2. Experiment a program for linked list-based							
	implementation of sets (C4)							

	3.	Experiment a program	for implementing a				
		dictionary (C4)					
	4.						
		and closed hash tables. (C	4)				
Basic Terminology, Implementation of		1. Experiment a prog	ram to implement				
Trees, Binary Trees, Binary Search Trees		binary trees (C4)					
		2. Experiment a program	n to implement				
		binary search trees (C4	1)				
		3. Experiment Tree trave	rsal techniques (C4)				
Basic definitions, Representation of	1.	Experiment programs to	represent a graph				
Graphs, Minimum Cost Spanning Tree,		using adjacency matrix and adjacency list					
Single Source Shortest Paths, All-Pairs		techniques (C4)					
Shortest Path	2.	Experiment a progra	am to implement				
		minimum cost spanning tr	ee (C4)				
	3.	Experiment a program to	solve Single source				
		shortest path problem (C4	.)				
	4.	Experiment a program to	solve All- pair				
		shortest path problem (C4	.)				
Learning strategy		Contact hours	Student learning				
			time (Hrs)				
Lecture		12	-				
Seminar		-	-				
Quiz		-	-				

Small Group Dis	scussion (SG	D)		-		-				
Self-directed le	earning (SDL	_)		-		-				
Problem Based	Learning (PE	BL)		-	-					
Case Based Le	earning (CBL)		03		-				
Clir	iic			-		-				
Pract	ical			24		-				
Revis	sion			03		-				
Assess	ment			06		-				
					I					
Practice problems					Internal La	b test				
Assignment evaluatio	n		End semester Lab examina							
			Viva							
Nature of assessment	ţ	CO 1	CO 2	CO 3	CO 4	CO 5				
Sessional Examination	n 1	*	*							
Sessional Examination	n 2		*	*	*					
Assignment/Presenta	tion	*	*	*	*	*				
Laboratory examinati	on	*	*	*	*	*				
	• End	l J-Semeste	r Feedba	ck	1					
	1. "Introdu	uction to A	lgorithm	s" Thoi	mas H. Corm	nen, Charles E.				
	Leiserson, Ronald L. Rivest.									
	2. "Data Structures& Algorithms" Aho, Hopcroft and Ulmann									
	3. "Data st	tructures a	and algori	ithm an	alysis in C"	Mark Allen Weiss				
	3. "Data structures and algorithm analysis in C" Mark Allen Weiss									

ME in VLSI High Level Digital Design Lab : EDA-601L 2020-2021 First Year, Semester 1											
: EDA-601L											
2020-2021 First Year, Semester 1											
This Course provides insight on											
1. To analyze logic processes and implement logical operation	1. To analyze logic processes and implement logical operations using										
combinational logic circuits and implement digital system using	combinational logic circuits and implement digital system using System										
Verilog.	Verilog.										
2. To understand characteristics of memory and their classification	2. To understand characteristics of memory and their classification and										
implement digital system using System Verilog.											
3. To understand concepts of sequential circuits and to analyze se	quential										
systems in terms of state machines and implement digital syste	m using										
System Verilog.											
4. To understand concept of Programmable Devices, PLA, PAL, CPLD a	nd FPGA										
and implement digital system using System Verilog.											
5. To understand the AMBA bus protocol and types of buses and im	plement										
digital system using System Verilog											
On successful completion of this course, students will be able to											
Design and implement combinational circuits.											
Design and implement sequential logic circuits.											
Design and implement AMBA Bus protocol.											
COs PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10	PO 11										
CO 1 * * * *											
CO 2 * * * * * ·											
CO 3 * * * *											

Content	Competencies								
Data flow modelling	1.	Experiment boolean expres	ssion using dataflow						
		modelling.							
Combinational circuits	1.	Experiment combinational	circuits like adders						
		multipliers and CPLD's using							
Sequential circuits	1.	Experiment sequential cire	cuit using System						
		Verilog(C4)							
Mealy and Moore machines	1.	Experiment Mealy and Mo	ore machines usin						
		System Verilog (C4)							
System Verilog for design	1.	Differentiate Verilog and Sys	stem Verilog. (C4)						
Vertex-5 FPGA	1.	Experiment combinational a	nd sequential						
		circuits on Vertex-5 FPGA. (C4)							
Spartan III Architecture	1.	Experiment combinational a	nd sequential						
		circuits on Spartan III. (C4)	·						
FIFO using system verilog	1.	Experiment FIFO using Syste	em Verilog(C4)						
AHB and APB using system verilog	1.	Experiment AHB and APB (C4)	using System Verilo						
	 								
Learning strategy		Contact hours	Student learning						
			time (Hrs)						

		1		
Lecture		1	2	-
Seminar			-	-
Quiz			-	-
Small Group Discussion (S	GD)		-	-
Self-directed learning (SI	DL)		-	-
Problem Based Learning (I	PBL)		-	-
Case Based Learning (CB	BL)	0	3	-
Clinic			-	-
Practical		2	4	-
Revision		0	3	-
Assessment			6	-
Internal practical Test			Sessional exa	mination
Theory Assignments			End semester	examination
Lab Assignment & Viva			Viva	
Nature of assessment	CO 1	CO 2		CO 3
Sessional Examination 1	*	*		
Sessional Examination 2		*		*
Assignment/Presentation				*
Lab Examination	*	*		*
• Ei	nd-Semeste	er Feedback	1	
• "An En	gineering A	Approach to Dig	ital Design", Fle	ectcher
• "Syster	mVerilog fo	or design by Stu	art Sutherland"	, Simon Davidmann,
Peter Fla		- ,		

 SNUG Paper [freely available]
 IEEE Paper [MU campus available]
ARM Specification.

			"SPIRED F	N LA (D	eemed to be l	University und	er Sectior	n 3 of	the UGC Act, 193	56)		
					Mast	er of En	igine	erir	ng (ME) –	VLSI De	sign	
					Digita	al Syste	ms ai	nd ۱	VLSI Desig	gn Lab		
		2020	0-2021				, Semeste					
					Ва	sic	Electronio	cs, Digit	al System	IS		
		This Course provides insight on										
		1. To study the basic working of MOSFETs.										
	2. To Design basic logic gates using MOSFETs.											
	3. To design simple combinational and sequential circuits.											
		4.	To dra	w layo	uts for	basic lo	gic ga	ate	s and sim	ple circu	iits.	
		5.	To sim	iulate t	he desi	gns and	veri	fy t	he functio	onality.		
		On suc	cessful	compl	etion of	f this co	urse,	, sti	udents wi	ll be abl	e to	
		Design	and t	est sta	atic CN	10S cor	nbin	atic	onal and	sequen	tial logic	at the
		transis	tor leve	el, inclu	ıding m	ask layo	out					
		Design	integra	ated cir	rcuits us	sing Cor	nput	er /	Aided Des	ign (CA	D) Tools	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO	7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*	*		*							
CO 2	*	*	*		*							
										1		
Conte	nt							Сс	ompetenc	ies		
To plo	t I-V Ch	aracteri	stics of	MOSF	ET	_			1. Prep	bare I-V	Characte	eristics
To plo	t DC ch	aracter	istics, t	ransfer	⁻ charac	teristic	s of	of MOSFET (C3)				
CMOS	invert	er and o	comput	e para	meters	like no	oise					
margir	n, powe	er dissip	ation									

To design basic physical design of simple c	ircuits	basic physical design			
		of simpl	e circuits (C5)		
Verify the Switching characteristics a	nd Power	1. Examine	e Switching		
dissipation of CMOS circuits		characte	eristics and Power		
		dissipat	ion of CMOS circuits		
		(C4)			
Design and simulation of simple com	nbinational	1. Design s	simple combinationa		
circuits such as Adders, Comparator, Coun	ter etc.	circuits such as Adders,			
		Comparator, Counter etc. (C5)			
Familiarizing use of EDA tools like Cadend	ce suite to	1. Experim	ent with EDA tools		
draw and check design rule		like Cadence suite to draw			
		and check design rule (C4)			
Learning strategy	Con	tact hours	Student learning		
			time (Hrs)		
Lecture		12	-		
Seminar		-	-		
Quiz					
Small Group Discussion (SGD)		-	-		
Self-directed learning (SDL)		-	-		
Problem Based Learning (PBL)		-	-		

Case Based Learning (CBL)		03		-		
Clinic		-	-			
Practical	24		-			
Revision		03		-		
Assessment		06		-		
Internal practical Test			Sessional examination			
Theory Assignments			End semester examination			
Lab Assignment & Viva		Viva				
Nature of assessment	CO 1			CO 2		
Sessional Examination 1	*			*		
Sessional Examination 2				*		
Assignment/Presentation	*			*		
Laboratory examination	*		*			
• End-	-Semester Feedbacl	k				
1. Cade	ence user manual					

			"SPIRED F	ď	-			f the UGC Act, 1		sign		
						laster of Engineering (ME) – VLSI Design erification Lab						
	E	DA 6031	_									
		2020-2	2021			F	irst Year	, Semeste	er 1			
		This Course provides insight on										
		1. To study the basic concepts of system verilog.										
		2. To understand different kinds of data types.										
		3. To Study the basic concepts of OOPs.										
		4. To understand the different components of verification environment.										
		On successful completion of this course, students will be able to										
		Design	a scen	ario for	Verifi	cation of	f a DUT	in Syster	n Verilog	5		
		Implen	nent th	ne use	fulnes	sofa	driver,	monitor,	checke	r, test c	ases in a	
		verifica	ntion er	vironn	nent							
		Design	test be	nch to	verify	the fund	tionalit	y of a de	sign			
		Design	a VIP f	or an IF	o as a p	oroject						
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	
CO 1	*		*									
CO 2	*	*			*							
CO 3			*									
CO 4	*		*									
Conter	nt					Compet	encies					
						-						
			•• •									
Funda	mental	functio	nalities	in sys	tem							
verilog						functions in System Verilog.						

Oops concepts in system verilog	1.	Experiment inheritance, encapsulation and abstrac (C4)				
Verification plan for RAM	1.	Write a verification plan for	or RAM? (C3)			
Assertions for a given RAM using	1.	Experiment assertions for	given RAM using			
system verilog		System Verilog (C4)				
Verification environment for memory	1.	Experiment verification er Memory.(C4)	nvironment for			
Randomization technique	1.	Experiment randomization	-			
		Memory in System Verilog	g. (C4)			
Verification environment for RAM	1.	Develop verification enviro	onment for RAM.			
Equivalence check for RAM	1.	 Model linting, equivalence check for RAM using cadence (C4) 				
Verification environment for MIPS	1.	Develop verification enviro processor (C6)	onment for MIPS			
Verification environment for MIPS	1.	Develop verification enviro processor(C6)	onment for MIPS			
Learning strategy		Contact hours	Student learning			
			time (Hrs)			
Lecture		12 -				

Seminar		-		-	
Quiz			-		-
Small Group Discussion (SG	iD)		-		-
Self-directed learning (SDI	L)		-		-
Problem Based Learning (Pl	BL)		-		-
Case Based Learning (CBL	.)		03		-
Clinic			_		-
Practical			24		-
Revision			03		-
Assessment			06		-
Internal practical Test				Sessional ex	kamination
Theory Assignments				End semest	er examination
Lab Assignment & Viva				Viva	
Nature of assessment	CO 1	CO 2	CO 3		CO 4
Sessional Examination 1	*	*			
Sessional Examination 2			*		*
Assignment/Presentation					*
	*	*		*	
Laboratory examination	*				
• End	d-Semes	ter Feed	back		
1. Jan	rgeron,	Verificati	on method	ology manual for	
SystemVei	rilog, Spi	ringer.			
2. Janicl	k Berge	ron, Wr	iting Test	tbenches usi	ng System Verilog,
Springer.					

3. William K. Lam, Hardware Design Verification - Simulation and
Formal Method Based Approaches.
4. Pallab Dasgupta, A Roadmap for Formal Property Verification,
Springer.

			-+1RED					ing (ME)	– VLSI De	sign	
							<u> </u>	,			
EDA-608L											
		2020)-2021				First Ye	ear, Sem	ester 1		
									nowledge		Computer
							, C prog	grammin	g languag	ge	
		This Co	ourse p	rovides	insigh	t on					
		1.	The co	ncept	of C++	for Syst	emC				
		2.	The co	ncept	of Syste	emC for	hardwa	are desci	riptions a	s a netlis	t
		3.	The co	ncept	of syste	ems app	roach to	owards e	lectronic	system l	evel flow
		4.	The o	concep	t of	System	C for	data p	rocessing	, data	storage,
			comm	unicati	ons an	d contro	ol mech	anisms			
		On successful completion of this course, students will be able to Describe the hardware in terms of input, output with sub blocks									
								-		OCKS	
							-	olem stat	ements		
		Examir	ne the c	orrect	ness of	the des	ign				
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*	*				*					
CO 2	*	*			*						
CO 3		*					*				
	1	1	<u> </u>	<u> </u>	I	I	<u> </u>	1		1	
Content						Compet	encies				
Introd	uction	to Syste	m Appr	oach		1. [Describ	e System	C for har	dware	
		-						-	uages (C2		

Electronic System Level Flow	1.	Apply SystemC for F	SM based system (C3
Design Principles in SOC Architecture	1.	Apply SystemC for F	RISC Architecture (C3)
Processors	1.	Examine SystemC for	or MIPS/ARM
		Processor (C4)	
Memory Design	1.	Examine SystemC for	or memory based
		design (C4)	
Hardware/Software Interfaces	1.	Examine SystemC fo	
		USB/Ethernet/PCle	(C4)
Learning strategy		Contact hours	Student learning
			time (Hrs)
Lecture		12	-
Seminar		-	-
Quiz		-	-
Small Group Discussion (SGD)		-	-
Self-directed learning (SDL)		-	-
Problem Based Learning (PBL)		-	-
Case Based Learning (CBL)		03	-
Clinic		-	-
Practical		24	-
Revision		03	-
Assessment		06	-

Internal practical Test	Sessional examination				
Theory Assignments	End sei	mester examination			
Lab Assignment & Viv	Viva				
				1	
Nature of assessment		CO 1	CO 2		CO 3
Sessional Examination	1	*	*		
Sessional Examination	12		*		*
Assignment/Presenta	tion				*
Laboratory Examination	on	*	*		*
	• Enc	l-Semester	Feedback		
	• IEEE Sta	Standard System	C [®] Lang	uage Reference Manual	
	by IEEE	Society			
	• System	C: From th	e Ground Up by	/ David (C. Black, Jack Donovan,
	Bill Bur	nton, Anna	Keist		

					Mast	aster of Engineering (ME) – VLSI Design						
						CAD for VLSI Lab						
EDA-609L												
2020-2021					F		, Semeste					
								of Data str		Graph the	eory, VLSI	
		This Co		rovidor		-	ns, C pro	gramming	.			
		ourse p		-								
		1. Rep	resenta	tion of	circuit	s using (data stru	uctures				
		2. Imp	lement	ation o	f VLSI (CAD algo	orithms					
		3. Dev	elop pa	rts of E	DA too	ols used	in VLSI I	Design au	tomatio	on		
		On suc	cessful	compl	etion o	f this co	urse, st	udents w	ill be ab	le to :		
		Illustra	ate a giv	ven circ	uit in t	he form	of a sui	table gra	ph using	g data str	uctures	
		Experi	ment V	lsi cae) algori	thms us	ing C an	id data st	ructures	5		
		Design	buildir	ng blocl	ks of E	DA tools						
COs	PO 1	PO 2	PO 3	PO 4	PO 5		PO 7	PO 8		PO 10	00.11	
		PO 2	PU 3	PO 4	PU 5	PO 6	PO 7	PU 8	PO 9	PO 10	PO 11	
CO 1	*											
CO 2		*	*									
CO 3				*	*							
Content				Compe	etencies							
Layout Compaction, Placement and Partitioning			At the end of the topic students should be able to:					l be able				
Floor p	lannin	g:				-		it placem it floor pl	-	-	-	

Floor planning concepts, Shape	3.	Experiment global a	nd local routing				
Functions and Floor plan sizing		algorithms C4)					
Routing:							
Global routing, algorithms for global							
routing, local routing, types of local							
routing problems							
Area Routing, algorithms for area	1.	Experiment area routing	algorithms (C4)				
routing, Channel routing, algorithms for	2.	Experiment channel rout	ting algorithms (C4)				
channel routing.	3.	Experiment logic synthe	esis algorithms (C4)				
Logic synthesis and verification							
High level logic synthesis:							
Need for high-level logic synthesis,							
Design representation and							
Transformation							
Partitioning	1.	1. Experiment partitioning algorithms (C4)					
	2.	Experiment scheduling a	lgorithms (C4)				
Scheduling	3.	Experiment allocation al	gorithms (C4)				
Allocation							
Learning strategy		Contact hours	Student learning				
			time (Hrs)				
Lecture		12	-				
Seminar		-	-				
Quiz		-	-				

Small Group Dis	cussion (SGI	0)	-		-
Self-directed le	earning (SDL))	-		-
Problem Based	Learning (PB	L)	-	-	
Case Based Le	arning (CBL)		03		-
Clin	ic		-		-
Pract	ical		24		-
Revis	ion		03		-
Assess	ment		06		-
					I
Internal practical Test	t			al examination	
Theory Assignments			End semester examination		
Lab Assignment & Viv	/a		Viva		
Nature of assess	sment	CO 1	CO 2		CO 3
Sessional Examin	ation 1	*			
Sessional Examin	ation 2		k	¢	*
Assignment/Prese	entation		×	¢	*
Laboratory Exam	*	k	¢	*	
	• End	-Semester Feedb	ack		
	1. "Graph	theory", Narsing	h Deo (Pr	entice-Ha	all of India private ltd)
	2. "Graph	theory" , Gibbons	5		
	3. "Algorit	hms for VLSI Desi	gn Autom	nation",	Sabih H. Gerez (John
	Wiley and S	Sons)			
	L				

	4. "High Level Synthesis -Introduction to chip and System Design",
	Daniel Gajski, Nikil Dutt, Allen Wu, Steve Lin (Kluwer Academic
	Publishers)
	5. "Logic synthesis and verification algorithms", Gary D. Hachtel,
	Fabio Somenzi (Kluwer Academic Publishers)
1	

					Mast	Master of Engineering (ME) – VLSI Design							
		2020 -	2021			F		, Semeste					
					Basic	: Knowle	Know edge of	-	Signals	and Syst	ems and		
		This Co	ourse p	rovides	insigh	t on							
		1. Un	derstar	nding o	f basics	s of Sign	al and S	ystems a	s pre-re	quisite.			
		2. Un	derstar	nding th	ne cono	cepts of	Fast Fo	urier Trar	nsforms.				
		3. Lea	arning ł	nardwa	re impl	lementa	tion of	systems.					
		4. Lea	rning F	IR and	IIR Filt	er Desig	ins.						
		5. Lea	rning o	concept	ts of m	ulti-rate	e signal	processin	g in the	form of s	ampling		
		rat	e conv	version	, struc	tures o	of samp	oling rate	e conve	erters an	d some		
		арр	olicatio	ns of sa	ampling	g rate co	onverter	ſS					
		6. Un	derstar	nding t	hree o	ptimum	n Weine	er filters,	adaptiv	ve algorit	hm and		
		tra	nsform	ing We	iner fil	ters in t	o adapt	ive filters					
		7. Un	derstar	nding	archite	cture,	memor	y mana	gement	and p	ipelining		
		cor	ncepts	of TMS	320C67	7XX pro	cessor tl	hrough se	elf-stud.				
		On suc	cessful	compl	etion o	f this co	ourse, st	udents w	vill be ab	le to			
		Use ma	atlab to	imple	ment v	arious E	SP tech	niques. (C3)				
		Experi	nent D	FT, LTI	technic	ques an	d analys	e the res	ults. (C4)			
		Design	FIR, B	utterw	orth an	d Cheb	ychev fil	ters in m	atlab. (C	:5)			
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11		
CO 1	*	*		*	*								
CO 2	*	*			*								
CO 3	*	*		*	*								
	I	<u> </u>					I	I			I		

ntent	Competencies
Write matlab programs to Generate waves Write matlab programs to Addition	Use Matlab to generate waves.(C3)
of two sequences Write matlab programs to Find	Use Matlab for addition of two sequences.(C3)
convolution of two sequences and verify the result using built-in	Compute convolution of two sequences using Matlab. (C3)
function	Analyse the convolution usinf built in functions.
User defined Matlab function to find convolution of two sequences and verify the result	(C4)
	Practice convolution user defined function in
	Matlab (C3)
Write matlab programs to Find DTFT of a sequence. Write matlab programs to Find DFT	Experiment DTFT of a sequence using Matlab (C Analyse the DFT of a sequence with built in
of a sequence and verify using built- in function	function (C4)
User defined Matlab function to find DFT and verify the result	Experiment DFT using Matlab (C4)
Write matlab programs to Find	Compute convolution of two sequence using DF in Matlab. (C3)
convolution of two sequences using DFT	Experiment time response of an LTI system in
Write matlab programs to Find the time response of an LTI system defined by either difference equation or transfer function	Matlab (C4)
defined by either difference	Matlab (C4)

 Write Matlab programs to find DFT using DIT-FFT and DIF-FFT algorithms, compare the result using built in function. Design FIR filters with frequency domain specification (LP, HP, BP and BR) using Frequency Sampling Technique and verify frequency response. Design FIR filter to meet required impulse response using Frequency Sampling Technique. 	Analyse DIT-FFT and DIF-FFT a Design FIR filters with frequer specifications. (C5)	
Write Matlab programs to Design FIR filters with frequency domain specification (LP, HP, BP and BR) using different window functions and verify frequency response. Design analog Butterworth and Chebychev filters using built-in functions, transform them to digital filter and verify their frequency response (C2). Design digital Butterworth and Chebychev filters using built-in functions verify the frequency response (C2)	Design FIR filters with frequency domain specifications. (C5) Design analog Butterworth and Chebychev filters using built-in functions. (C5) Design digital Butterworth and Chebychev filters using built-in functions. (C5)	
Learning strategy	Contact hours	Student learning time (Hrs)
Lecture	12	_
Seminar		
Quiz	-	_

Small Group Discussion (SGD) -		-		-		
Self-directed learning (SDL) -			-			
Problem Based Learning (PBL) -			-			
Case Based Learning (CBL) 03			-			
Clinic -			-			
Practical 24			-			
Revision 03		03		-		
Assessment 06			-			
	I					
Internal practical Test		Sessional examination				
Theory Assignments		End semester examination				
Lab Assignment & Viva			Viva			
Nature of assessment	CO 1	CO 2		CO 3		
Sessional Examination 1	*	*				
Assignment/Presentation				*		
Laboratory Examination	*	*		*		
End-Semester Feedback						
"Digital Signal Processing", Sanjith K Mitra						
"Digital Signal Processing", Oppenheim and Schafer						
"Digital Signal Processing", Roman Kuc						
"Digital Signal Processing", Proakis and Manolakis						
"Digital Signal Processing", Rabinder and Gold Shave Out Line Series						
Shaum Out-Line Series						

•	"Signals and Systems", Symon Haykins
•	DSP Processors and Fundamentals
•	"Multirate signal processing", Vaidyanathan
•	"Handbook of DSP", Elliot

					Mas	ter of Ei	ngineerir	ig (ME) –	VLSI De	esign			
					Mini	Mini Project - 1							
	:	EDA 695	5										
		2020 -	- 2021			F	irst Year,						
					basic	·C	Any	program	ming la	nguage a	nd circuit		
		Studer	nts are e	expecte			roblem i	n the are	a of the	ir interes	t and the		
										ation in h			
				-			ulu i cqui		nement				
		/ SOTTV	vare or	both ir	i a sem	ester							
		On suc	ccessful	compl	etion c	of this co	ourse, stu	idents w	ill be ab	le to			
		Apply	the obj	ectives	of the	project	work and	l provide	an adeo	quate bac	kground		
		with a	detaile	d litera	iture si	irvey							
		Breako	down tl	ne pro	iect in	to sub	blocks w	ith suffic	cient de	tails to a	llow the		
				-	-		pendent						
		Compo	ose har	dware	/softwa	are des	ign, algo	rithms,	flowcha	irt, meth	odology,		
		and bl	ock dia	gram									
		Evalua	te the i	results									
		Summ	arize th	ie work	carrie	d out							
<u> </u>	50.4			201	- DO 5		20.7			100.40	00.44		
COs	PO 1	PO 2	PO 3	PO 4 *	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11		
CO 1				*									
CO 2					*			*					
CO 3							*			*			
CO 4			1			*					*		
CO5:							*						
	ı		ı	I	ı				ı	-			
Conter	nt					Competencies							

$^{SP}_{RED BY}$ (Deemed to be University under Section 3 of the UGC Act, 1956)							
Problem identification, synopsis	At the end of the topic student should be able to:						
submission, status submission, mid	1. Identify the problem/specification (C1)						
evaluation.	2. Discuss the project (C2)						
	3. Prepare the outline (C3)						
	4. Describe the status of the project (C2)						
	5. Prepare a mid-term project presentation						
	report (C3)						
	6. Prepare and present mid-term project						
	presentation slides (C3, C5)						
	7. Develop project implementation in						
	hardware/software or both in chosen platform						
	(C5)						
	1						
Status submission, final evaluation.	1. Prepare the progress report (C3)						
	2. Prepare the final project presentation report (C3)						
	3. Prepare and present final project presentation						
	slides (C3, C5)						
	4. Modify and Develop implementation in						
	hardware/software or both in chosen platform						
	(C3, C5)						
	5. Justify the methods used and obtained results						
	(C6)						
Learning strategy	Contact hours Student learning						
Learning strategy	time (Hrs)						
Lecture							
Seminar							
Quiz							
	10						
Small Group Discussion (SGD)	48 -						

Self-directed learning (SD	L)		-		-	
Problem Based Learning (P	BL)		-	-		
Case Based Learning (CBL	.)		-		-	
Clinic			-		-	
Practical			-		-	
Revision			-		-	
Assessment			03		-	
Project Problem Selection			Mid-Term Presentation			
Synopsys review			Second status review			
First status review				Demo & Final Presentation		
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5	
Mid Presentation	*	*				
Presentation	*	*	*	*	*	
• En	d-Semes	ter Feedb	ack			
Particular	to the cl	nosen pro	ject			

					Mast	er of En	gineering	g (ME) –	VLSI De	esign			
					Semi	nar - 1							
	:	EDA 697											
		2020 -	2021			F	irst Year, S						
		Communication Skill 1. To select, search and learn technical literature.											
		1. To	select,	search	and lea	arn tech	nical liter	rature.					
		2. То	Identify	y a curr	ent an	d releva	nt resear	ch topic	-				
		3. То	prepar	e a top	ic and o	deliver a	presenta	ation.					
		4. To	develo	p the sl	kill to w	vrite a te	echnical r	eport.					
		5. Dev	velop a	bility to	o work	in group	os to revie	ew and r	modify	technical	content.		
		On suc	cessful	compl	etion o	f this co	urse, stud	dents wi	ill be ab	le to			
		Show c	compet	ence in	identif	fying rel	evant info	ormatio	n, defin	ing and e	xplaining		
		topics	under o	discussi	ion.	ın.							
		Show c	ompet	ence in	workir	orking with a methodology, structuring their oral work,							
		and sy	nthesiz	ing info	ormatio	on.							
		Use ap	propria	ate regi	sters a	nd voca	bulary, ar	nd will d	emonst	trate com	imand of		
		voice n	nodula	tion, vo	oice pro	jection,	and paci	ing.					
					-	e paid c	lose atter	ntion to	what o	thers say	and can		
		respond constructively. Develop persuasive speech, present information in a compelling, well- structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to									ng ideas,		
		synthesize, evaluate and reflect on information.											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11		
CO 1													
										+			
CO 2													

CO 4								
CO5:								
Learning	strategy		Со	ntact ho	ours		Student led	irning
-							time (H	
Lect	ure			-			-	
Sem	inar			-			-	
Qu	liz			-			-	
Small Group Di	scussion (SG	D)		14			-	
Self-directed I	earning (SDL	.)		-			-	
Problem Based	Learning (PE	BL)		-			-	
Case Based Le	earning (CBL))		-		-		
Clir	nic		-				-	
Prac	tical		-				-	
Revi	sion		-				-	
Assess	ment		-				-	
Seminar Topic Select	ion							
Synopsys review								
PPT Review								
Nature of assessmen	t	CO 1	CO 2	CO 3	CO 4		CO 5	
Presentation		*	*	*	*		*	
	• End	l-Semeste	r Feedbad	ck				
	Particular t	to the cho	sen Semir	nar				

					Mast	aster of Engineering (ME) – VLSI Design						
					Adva	nced VLS	SI Design					
		EDA 604										
		2020-2	2021			F	irst Year	, Semeste	r 2			
		This Co	ourse p	rovides	insigh [:]	t on						
		On successful completion of this course, students will be able to										
		To lea	To learn modelling, analysis, and design of analog circuits using CMO									
		technologies.										
		Introduce the principles of analog circuits and apply the techniques for the										
		design of CMOS analog integrated circuits.										
		Apply	the me	thods	learneo	d in the	class t	o design	and imp	lement	oractical	
		project	S									
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	
CO 1	*		*									
CO 2		*	*									
CO 3	*	*							*			
Conter	nt				(Compet	encies					
Resisto	or: Fabi	rication	– Diffe	erent la	yers	1. Desi	gn Layo	ut of pas	sive com	ponents i	in CMOS	
used, I	ayout	techniq	ues an	id prac	tical	tech	nology	(C5)				
conside	eration	s,										
Tempe	rature	and vol	ltage d	epende	ence							
resistors, Active resistors – advantages												

(Deemed to	be University under Section 3 of the UGC Act, 1956)
Capacitor: Fabrication – "poly-	
substrate", "poly-poly", "metal-poly" –	
comparison, Layout	
techniques, Temperature and voltage	
dependence, Active Capacitors.	
Low frequency MOSFET Model: Small-	1. Develop analog MOSFET model (C5)
signal model of the MOSFET in	
saturation, Derivation for gm and	
r _o	
High frequency MOSFET Model:	
Variation of transconductance with	
frequency	
Current Source, current Sink and	1. Design current sources and sinks for a given
Current Mirror – Differences,	specification (C5)
Applications ,Current Mirror-Basic	
current mirror, The cascode current	
mirror – advantages, derivation ,for o/p	
resistance r0,Layout of current	
Sources/Sinks/Mirrors, Matching in	
MOSFET mirrors, Other Current	
Sources /Sinks/Mirrors- Wilson current	
mirror, Regulated cascode current	
mirror	

Voltage Dividers, Sensitivity and	1.	Design voltage and current references and to
Fractional temperature coefficients-		make them insensitive to voltage and
Resistor-MOSFET divider, MOSFET-only		temperature variation (C5)
voltage divider, Current Source Self-		

Biasing-Threshold voltage referenced	
self biasing,	
Diode referenced self biasing, Thermal	
voltage referenced self biasing,	
Bandgap voltage references, Bandgap	
referenced biasing, Beta Multiplier	
Referenced Self-Biasing-A voltage	
reference, Operation	
in the Sub threshold region	
Amplification – need for amplification,	1. Design CMOS single stage amplifier for a
basic concepts, Important performance	given specification (C5)
parameters – "Analog Design Octagon"	
,Common Source (CS) Amplifier-	
Derivation for Av and comparison of CS	
Amplifier with: Passive resistor load,	
MOSFET/Diode-Connected/ /Active	
load, Current source load - Common	
Drain Amplifier (or Source Follower)-	
Derivation for Av and comparison of CD	
Amplifier with: Passive resistor load,	
MOSFET/Diode-Connected/ /Active	
load, Current source load - Common	
Gate Amplifier-Derivation for Av and	
comparison of CG Amplifier with:	
Passive resistor load, MOSFET/Diode-	
Connected/ /Active load, Current	
source load - The Push-Pull Amplifier,	
Noise and Distortion in Amplifiers-A	

class AB Amplifier - Modelling Amplifier	
Noise	
The Source Coupled Pair-Current 1	. Design and simulate differential amplifier for
Source Load, Common-Mode Rejection	a given specification with different types of
Ratio, Noise, Matching Considerations.	load (C5)
The Source Cross-Coupled Pair-Current	
Source Load Cascode Loads, Wide-	
Swing	
Differential Amplifiers, Current	
Differential Amplifier, Constant	
Transconductance Diff-Amp.	
Introduction, Frequency response of single	1. Design and test frequency response of
stage amplifiers, Frequency response of	single stage amplifier (C5)
Differential pair.	
Statistical characteristics of noise, types of	1. Illustrate various types of noise affects
noise, representation of noise in circuits,	amplifier operation (C4)
noise in single-stage amplifiers, noise in	
differential pairs, noise bandwidth.	
Basic CMOS Op-Amp Design-Characterizing	1. Illustrate basic design of operational
the op-Amp, Compensating the Op-amp	amplifier and OTA. (C4)
Without Buffer, The Cascode Input Op-	
amp, Operational Transconductance	
Amplifiers.	
Design of Basic CMOS Comparator,	1. Design of nonlinear analog circuits (C5)
Characterizing the Comparator - Adaptive	

^{VSp}RED BY L^{W} (Deemed to be Un	iversity under Section 3 of the U	JGC Act, 1956)	
Biasing, Analog Multipliers-The Multiplying			
Quad, Level Shifting, Multiplier Design			
Using Squaring Circuits.			
The MOSFET Switch - Switched-Capacitor	1. Illustrate sv	vitched cap	acity circuits (C4)
Integrator Circuits			
Sample-and-Hold (S\H) Characteristics,	1. Design of y	various tvp	es of ADC and DAC
DAC and ADC Specifications, Architectures	(C5)		
 Cyclic DAC, Pipeline DAC, Pipeline ADC, 	(00)		
Integrating ADCs, SAR ADC			
Learning strategy	Contact ho	nurs	Student learning
	contact ne		time (Hrs)
Lecture	30		60
Quiz	02		04
Small Group Discussion (SGD)	02		02
Self-directed learning (SDL)	-		04
Problem Based Learning (PBL)	02		04
Case Based Learning (CBL)	-		-
Revision	02		-
Assessment	06		-
Internal practical Test		Sessional	examination
Theory Assignments		End seme	ster examination
Lab Assignment & Viva		Viva	

Nature of assessment	+	CO 1	CO 3					
Sessional Examination		*	CO 2					
Sessional Examination	on 2 * *							
Assignment/Presenta	ation * *							
End Semester Examin	nation * * *							
	• End	d-Semeste	er Feedbac	k				
	1. "CMOS	Circuit De	sign, Layoı	ut, and Simulation", Baker, Li, & Boyce,				
	IEEE Press,	, 1998.						
	2. " Desigi	n of Analo	g CMOS Ir	tegrated Circuits", Razavi, McGraw-				
	Hill, Inc., 2000.							
	3. "Analog	g Integrate	ed Circuit [Design ", Johns & Martin, , John Wiley				
	& Sons, 19	97.						
	4. "CMOS	Analog D	esign, 2nd	Ed." ,Allen & Holberg, Oxford Univ.				
	Press, 198							
	-		sign of An	alog Integrated Circuits ",Gray &				
	Meyer, Joł		-					
	-	-		Ismail, & Terri Fiez, , McGraw-Hill, Inc.				
		-						
		-	chiliques l	or Analog and Digital Circuits", Geiger,				
	Allen, & St							
	McGraw-F							
	8. Recent	papers fro	om IEEE Jo	urnal of Solid state Circuits and other				
	technical r	nagazines						

Low Power VLSI DesignEDA 6052020-2021First Year, Semester 2										
2020-2021 First Year, Semester 2										
CMOS circuit fundamentals, Dig	ital and									
Analog circuits										
This Course provides insights on	his Course provides insights on									
1. Various components of power dissipation in CMOS	1. Various components of power dissipation in CMOS									
2. Fundamentals of various approaches to low power design	2. Fundamentals of various approaches to low power design									
3. Low power design techniques	3. Low power design techniques									
4. Design of low power building blocks	4. Design of low power building blocks									
On successful completion of this course, students will be able to										
Describe various components of power in CMOS VLSI Design										
Comprehend various leakage power reduction techniques, technological sectors and the sector of the s	ogy and									
scaling related aspects of low power VLSI design										
Explain low power design methodologies and flows										
Apply low power techniques for designing VLSI building blocks										
COs PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10	PO 11									
CO 1 *										
CO 2 * * *										
CO 3 * /										
CO 4 * * O										
Content Competencies										

^{VSPIRED BY VS} (Deemed to	be University under Section 3 of the UGC Act, 1956)
Dynamic and Static power components,	1. Illustrate of basics of low power design (C3)
Leakage current components, Factors	2. Describe various power dissipation
affecting leakage power, Examples	components in CMOS technology (C2)
Circuit techniques for leakage power	1. Illustrate of various circuit techniques of
reduction: Stacking – natural and	leakage power reduction (C3)
artificial, Multiple Vth techniques -	2. Illustrate basics of dynamic power
Multiple Channel Doping's, Multiple	reduction (C3)
Oxide CMOS (MOXCMOS) Circuits,	3. Describe various dynamic V _{th} techniques
Multiple Channel Lengths, Multiple	(C2)
Body Biases, Multi-threshold-voltage	
CMOS (MTCMOS), Dual Threshold	
CMOS, Variable Threshold CMOS	
(VTMOS), Dynamic Threshold CMOS	
(DTMOS), Dynamic Vth techniques –	
Vth hopping scheme, Dynamic voltage	
scaling(DVTS) scheme.	
	I
Scaling techniques – constant voltage,	1. Illustrate scaling techniques (C3)
constant field and lateral scaling.	
	I
Reliability-Driven Voltage Scaling,	
Technology-Driven Voltage Scaling,	1. Describe different voltage scaling approaches
Energy x Delay Minimum Based Voltage	for dynamic power reduction (C2)
Scaling, Voltage Scaling through	
Optimal Transistor Sizing,	
Voltage Scaling using Threshold	
Reduction, Architecture-Driven Voltage	
Scaling.	

Generated and propagated glitches,								
Glitch power analysis, Reduction	Illustrate significance of	glitch power and						
techniques, Gate triggering approach.	techniques to reduce the sar	me (C3)						
Principle, Combinational and sequential	Illustrate clock gating princ	iple and its types and						
clock gating, Clock gating efficiency.	techniques (C3)							
Adiabatic techniques for low power Illustrate adiabatic techniques for low power								
	design (C3)							
Logic optimization for low power, Powe	er Describe various design	tool level support to						
modelling, Power analysis	low power VLSI design (C	2)						
System level issues in multi-voltag	e Illustrate low power de	sign issues at system						
designs, Level shifters	level (C3)							
Low power design of building blocks	Apply low power design	techniques to design						
	VLSI building blocks (C3)							
Learning strategy	Contact hours	Student learning						
		time (Hrs)						
Lecture	30	60						
Quiz	02	04						
Small Group Discussion (SGD)	02	02						
Self-directed learning (SDL)	-	04						
Problem Based Learning (PBL)	02	04						
Case Based Learning (CBL)	-	-						
Revision	02							
		-						
Assessment	06	-						

Internal practical Test								
Theory Assignments End semester examinati								
Lab Assignment & Viva				Viva				
Nature of assessment		CO 1 CO 2 CO 3			CO 3			
Sessional Examination 1		*	*					
Sessional Examination 2			*		*			
Assignment/Presentation	n		*		*			
End Semester Examination	on	*	* *					
•	En	d-Semester	Feedback					
1.	"Low-F	ower CMO	S VLSI Circuit [Design",Kaush	ik Roy and Sharat C.			
Pr	rasad, W	'iley-Intersc	ience.					
2.	"CMOS	Low Powe	r Digital Desigi	n", A. Chandra	akasan & R.			
Br	roderser	n, Kluwer Ad	ademic Pubs.	1995.				
3.	"Low P	ower Desig	n Methodolog	ies",J. Rabaey	v & M. Pedram, ,			
кі	uwer Ac	ademic Pub	os. 1996.					
4.	"Low –	Power Digi	tal VLSI Desigr	n, Circuits and	Systems", Bellaour			
&	M.I. Ela	mstry <i>,</i> Kluw	ver Academic F	Publishers, 19	96.			
5.	S. Imar	n & M. Ped	ram, Kluwer A	cademic Publi	ishers, 1998.			
6.	6. "Logic synthesis for Low – power VLSI Designs", B.G.K.Yeap,							
"F	"Practical Low Power Digital VLSI Design", Kluwer Academic							
Ρι	ublishers	s <i>,</i> 1998.						
7.	"Powe	r Aware Des	sign Methodol	ogies", Pedra	m, Massoud, Rabaey,			
Ja	n M., Kl	uwer Acade	mic Publisher	S.				

8. "Low-power Digital Systems Based on Adiabatic- Switching
Principles", W.C. Athas, L. Swensson, J.G. Koller and E. Chou, , IEEE
Transactions on VLSI Systems, vol. 2, pp. 398-407, December 1994.
9. "A survey of power estimation techniques in VLSI circuits", F.
Najm, IEEE Transactions on VLSI Systems, vol. 2, pp. 446-455,
December 1994.

					Maste	r of Eng	ineerin	g (ME) – VI	_SI Desig	ın	
										-	
	:	EDA 60	06								
		2020-2	2021			Fir	st Year,	Semester 2			
			·		-						
		1.	To stu	dy the l	basic str	ucture c	of UVM.				
		2.	To und	derstan	d UVM l	ibrary b	asics.				
		3.	To Stu	dy the	basic co	ncepts c	of OOPs				
Master of Engineering (ME) – VLSI Design Universal Verification Methodology : EDA 606 2020-2021 First Year, Semester 2 This Course provides insight on 1. To study the basic structure of UVM. 2. To understand UVM library basics. 3. To Study the basic concepts of OOPs. 4. To understand the different components of verification environment. 5. To understand the concept of Register Abstraction Layer, TLM Communications. On successful completion of this course, students will be able to Model a scenario for Verification of a DUT in UVM. Analyse the usefulness of a driver, monitor, checker, test cases in UVM verification environment. Explain component configuration and factory. Explain the concept of Register Abstraction Layer and TLM communications. Design test bench to verify the functionality of a design. Design a VIP for an IP as a project. COS PO 1 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 11											
		5.	To ur	ndersta	nd the	conce	ot of	Register	Abstract	ion Laye	er, TLM
			Comm	unicati	ons.						
		On suc	cessful	comple	etion of	this cou	rse. stu	dents will l	be able t	0	
				F			,				
Model a scenario for Verification of a DUT in UVM.											
	Analyse the usefulness of a driver, monitor, checker, test cases in UVM										in UVM
		Explain	the co	ncept o	of Regist	er Abstı	raction	Layer and ⁻	TLM com	nmunicat	ions.
		Design	test be	ench to	verify th	ne funct	ionality	of a design	า.		
		Design	a VIP f	or an IF	o as a pro	oject.					
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1		*									
CO 2		*									
CO 3	*										
CO 4	*										
CO 5			*								

CO 6			*								
Conter	nt					Compe	tencies				
Verific	ation	Plannin	ig and	d Cov	erage-	1.	Explain	UVM testb	ench ar	id enviro	nments.
Driven	Verific	ation,	Multi-L	anguag	ge and		(C2)				
Metho	dologie	es. UV	M Tes	tbench	n and	2.	Explain	System Ve	erilog U	VM class	library.
enviro	nments	, Inter	face U	VCs, S	System		(C2)				
and N	lodule	UVCs,	the Sy	stem \	Verilog						
UVM c	lass libı	rary.									
Introdu	uction,	What i	s an ol	oject ir	n OOP,	1.	Explain	polymo	orphism	, inhe	eritance,
Distrib	uted c	levelop	ment	enviror	nment,		encaps	ulation and	abstrac	tion. (C2)
Classes	s, Ob	jects,	Progra	ams,	Using	2.	Explain	static met	hods an	d param	eterized
genera	lizatior	n a	nd	inher	itance,		classes.	(C2)			
polymo	orphism	n in OC	DP, Dov	wncast,	, Class						
librarie	es, Stat	ic meth	nods ar	id attri	ibutes,						
param	eterize	d class	ses, pa	ackages	s and						
names	paces.										
Using	UVM li	brary, L	.ibrary	Base C	lasses,	1.	Explain	uvm_com	ponent	and uvm	n_object
the	uvm_	_object	С	ass,	the		class. (C	22)			
uvm_c	ompon	ent	class	5,	UVM	2.	Explain	TLM in UV	M (C2)		
configu	uration	mecha	nism, 1	LM in	UVM,	3.	Explain	UVM facto	ory and o	allbacks	(C2)
UVM	factory	, UVM	messa	ige fao	cilities,						
callbac	ks.										
					I_						
Stimul	us mo	odeling	and	gene	ration,	1.	Explain	stimulus n	nodellin	g and gei	neration
creatin	g the	e driv	er, c	reating	g the		in UVM	(C2)			
sequer	ncer, co	nnectin	ig the d	river							

and sequencer .	2. Explain the creation of driver, sequencer
	and connecting them. (C2)
Creating the collector and monitor,	1. Explain how to create UVM sequences. (C2)
modeling topology with UVM, creating	2. Explain the concept of packaging interface
the Agent, creating the UVM verification	UVCs. (C2)
component, creating UVM sequences,	
configuring the sequencer's default	
sequence, coordinating end-of-test,	
implementing protocol-specific coverage	
and checks, handling	
reset, packaging interface UVCs.	
Establish and Query Component Parent-	1. Explain the concept of factory and
Child Relationships, Set Up Component	component configuration (C2)
Virtual SystemVerilog Interfaces with	
uvm_config_db, Constructing	
Components and Transactions with UVM	
Factory,	
Implement Tests to Configure	
Components, Implement Tests to Override	
Components with Modified Behaviour.	
Create User Callback Hooks in Component	1. Explain the concept of UVM callback. (C2)
Methods, Implement Error Injection with	
User Defined Callbacks, Implement	
Component Functional Coverage with User	
Defined Callbacks, Review Default	
Callbacks in UVM Base Class.	

(Deemed to be Unit	
Testbenches and Tests, creating a simple	1. Explain steps to creating simple
testbench, testbench configuration,	testbench. (C2)
creating a test, creating meaningful tests,	2. Describe virtual sequencers and
virtual sequencers and sequences,	sequences. (C1)
checking for DUT correctness,	3. Explain how to implement coverage
implementing a coverage model.	model. (C6)
Fine control sequence generation,	1. Explain the concept of fine control
executing multiple sequences	sequence generation and executing
concurrently, using p_sequencer, using	multiple sequences concurrently. (C2)
pre_body() and post_body() methods,	
controlling the arbitration of items,	
interrupt sequences,	
protocol layering.	
Registers, Specification, Adapter,	1. Explain register model overview, adapter,
Integrating, Integration, Register Model	model structure quirky registers and back
Overview, Model Structure, Quirky	door access. (C2)
Registers, Model Coverage, Back Door	
Access, Generation, Stimulus Abstraction,	
Memory Stimulus, Sequence Examples,	
Built in Sequences, Scoreboarding,	
Functional Coverage.	
Introduction, module and system UVC	1. Explain scalability concerns in system
architecture, sub-components of module	verification. (C2)
configuration, the testbench, sequences,	
coverage, stand-In mode, scalability	

concerns in system verification, module							
UVC Directory structure.							
TLM Push, Pull and Fifo M	1odes, TLN	/ 1. Ex	plain TLM	push, pop	, fifo, TLM	analysis	
Analysis Ports, TLM Pass-Thr	ough Ports	s, po	orts, bloc	cking a	nd non-	-blocking	
TLM 2.0 Blocking and N	lon-Blockin	g tra	ansport soc	kets. (C2)			
Transport Sockets							
Learning strategy		Сог	ntact hours		Student l	earning	
					time (Hrs)	
Lecture			30		60)	
Quiz			02		04	Ļ	
Small Group Discussion	(SGD)		02				
Self-directed learning (SDL)		-			ļ	
Problem Based Learning	(PBL)		02			ļ	
Case Based Learning (C	CBL)		-		-	-	
Revision			02		-	-	
Assessment			06		-		
		·					
Internal practical Test			Sessio	nal exami	nation		
Theory Assignments			End se	emester e	xaminatio	n	
Lab Assignment & Viva			Viva				
			·				
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5	CO 6	
Sessional Examination 1	*	*					
Sessional Examination 2			*	*	*		
Assignment/Presentation						*	

*	*	*	*	*	nation	End Semester Examin		
End-Semester Feedback								
1. Sharon Rosenberg, Kathleen Meade, "A Practical Guide to Adopting								
hers, 2010.	the Universal Verification Methodology (UVM)", Lulu publishers, 2010.							
2. Vanessa R. Cooper, "Getting started with UVM: A beginner's guide",								
			13.	blisher, 20	Verilab pu			
)13.	demy, 2	erification Ac	ookbook, '	3. UVM C			
		.1.	, Accellera, 20	ser's guide	4. UVM U			
er's g		demy, 2	13. erification Ac	blisher, 20 ookbook, '	Verilab pu 3. UVM C			

Master of Engineering (ME) – VLSI Desig										sign		
						ripting for VLSI						
		EDA 607	,									
		2020-2	2021			F	irst Year, S	Semester	[.] 2			
		The go	al of th	e cours	se is to	0						
		1. Stu	dy of s	cripting	g lang	uages suo	ch as Basł	n and Pe	rl in Lin	ux enviro	nment.	
2. The study of usage of scripting languages in VLSI field.												
3. To provide the basic knowledge about different tools available										lable to		
automate the task												
On successful completion of this course, students will be able to												
		Discov	er shell	script	progra	ammatica	ally using	differen	t featur	es and de	bugging	
		the co	de									
		Apply 9	SED & A	WK co	mma	nds to do	more co	nplex ta	isk in ea	isy way		
		Apply I	PERL sc	ripts th	at cre	eate and o	change sc	alar, arr	ay and l	hash vari	ables	
COs	<i>PO</i> 1	PO 2	PO 3	PO 4	PO 5	5 PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	
CO 1	*	*	*									
CO 2	*	*		*								
CO 3		*	*	*								
Conten	t					Competencies						
Structure of a Linux Based Operating					ting	1. Sum	marize t	ne Stru	cture o	f a Linu	x Based	
System, Hardware, Kernel, files & file						Operating System						
system	; Proce	esses; ne	etworki	ng; ver	sion	2. Discuss Hardware, Kernel (C2)						
control.						3. Explain files & file system, Processes;						
						netv	vorking; v	ersion c	ontrol((22)		

Shell Programming: Variables; User	1. Explain Variables, User defined variables (UDV)
defined variables (UDV); Rules for	(C2)
Naming variable name; echo	2. Examine the Rules for Naming variable name
Command; Shell Arithmetic; Quotes;	(C3)
Exit Status; Wild cards; Command Line	3. Write basic shell script using echo Command,
arguments; Redirection of Standard	Shell Arithmetic, Quotes, Exit Status, Wild
output/input; Pipes; Filter; shell	cards, Command Line arguments; Redirection,
language constructs.	Pipes, constructs. (C3)
Awk utility	1. Illustrate Data manipulation using awk
	utility(C3)
	2. Experiment Regular expression using awk
	utility (C4)
	3. Experiment script using conditional
	statement using awk (C4)
cut utility; paste utility; join utility; tr	1. Illustrate File operations using sed
utility; Data manipulation using awk	operations (C3)
utility, sed utility; uniq utility, grep	2. Write the importance of make utility (C2)
utility; Make Utility.	3. Construct make utility (C5)
Introduction to Perl; Unary operator;	1. Experiment Perl program using Perl
Binary Operators; Statements;	constructs (C4)
Constructs.	
Pattern Matching Subroutines;	1. Illustrate Pattern matching (C3)
formats; References; Packages.	2. Discover Generate formats (C3)
Modules; overloading	1. Illustrate Importance of modules (C3)

		2. Experiment overloading (C4)				
Unicode; Interprocess; threads; compiling; command line interface.		1. Con:	structs Perl o	ne liners (C5)		
Learning strategy		Contact	hours	Student learning time (Hrs)		
Lecture		30		60		
Quiz		02		04		
Small Group Discussion (SG	D)	02		02		
Self-directed learning (SDI	_)	-		04		
Problem Based Learning (Pf	BL)	02		04		
Case Based Learning (CBL)	-		-		
Revision		02		-		
Assessment		06	-			
Internal practical Test			Sessional	examination		
Theory Assignments			End seme	ster examination		
Lab Assignment & Viva		Viva				
Nature of assessment	CO 1	CO 2		CO 3		
Sessional Examination 1	*	*				
Sessional Examination 2		*		*		
Assignment/Presentation				*		
End Semester Examination	*	*		*		

•	End-Semester Feedback
1.	"Introduction to Linux – A Beginner's Guide", Machtelt
	Garrels
2.	"Unix shell programming", Stephen G. Kochan, Patrick H.
	Wood
3.	"Sed & awk ", Dale Dougherty, Arnold Robbins
4.	"Programming Perl", Larry Wall, Tom Christiansen, Jon
	Orwant

					Mast	er of Eng	gineerii	ng (ME) – VLS	SI Desigr	1		
						T Project Management						
	:	CSE 63	1									
		2020 -	- 2021			Fii	st Year	, Semester 2				
							Famili	arity in develo	ping app	lication u	sing any	
					high le	evel lang	uage					
		This Co	ourse p	rovides	insight	on						
		1. The	e conce	pt of so	oftware	develop	ment	process and p	project r	nanagen	nent	
		2. Illustrates the difference between a lab assignment and group									ct	
		3. Help the students to understand the finer points of Project management										
		4. Bri	ng awa	reness	about t	he proc	esses,	tools and teo	hnique	s involve	d in the	
		field of IT project management										
		On successful completion of this course, students will be able to										
		Illustra	te the	importa	ance of	project	plannir	ng.				
		Discuss	s and c	lemons	strate v	arious t	ools ap	plicable for	differen	t phases	of the	
		softwa	re proj	ect.								
		Illustra	te the	importa	ance of	Change	manag	ement.				
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	
CO 1	*	*										
CO 2		*	*									
CO 3	*		*									
		1									<u> </u> [
Conter	nt				0	Competencies						
Under	stand t	he Proj	ect Nee	eds, Cr	eate 1	e 1. Understand the project needs, necessity of plan,					of plan,	
the Pr	oject	Plan, D	iagnosi	ng Pro	oject							
	-		0	0		Planning Problems (C1)						
Planning Problems												

Elements of a Successful Estimate,		1. List the importance of estimation and
Wideband Delphi Estimation, Other		describe different estimation techniques (C2)2. Discuss the significance of Reviews and
Estimation Techniques, Diagnosing		different review techniques (C2)
Estimation Problems.		
Building the Project Schedule,	1.	Outline the steps in building project
Managing Multiple Projects, Use the		schedule.(C1)
Schedule to Manage Commitments,	2.	Indicate mechanism of managing multiple
Diagnosing Scheduling Problems.		projects. (C2)
	I	
Inspections, Deskchecks,	1.	Discuss the significance of Reviews and different
Walkthroughs, Code Reviews, Pair		review techniques (C2)
Programming, Use Inspections to		
Manage Commitments, Diagnosing		
Review Problems.		
	1	
Requirements Elicitation, Use Cases,	1.	Introduce to requirement elicitation techniques,
Software Requirements Specification,		design and demonstrate the requirement
Change Control, Introduce Software		documentation by field visits(C2)
Requirements Carefully, Diagnosing		
Software Requirements Problems		
	1	
Review the Design, Version Control w	ith	1. Illustrate the key steps in design and
Subversion, Refactoring, Unit Testing, L	Jse	programming phase. Version control and unit
Automation, Be Careful with Existi	ng	testing significance (C3)
Projects, Diagnosing Design a	nd	
Programming Problems		

Test Plans and Test Cases, Test Execution,	1. Define the test plans, significance of test		
Defect Tracking and Triage, Test	phase and the test case characteristics.		
Environment and Performance Testing,	Introduce different types testing and		
Smoke Tests, Test Automation,	significance of type of testing.(C2)		
Postmortem Reports, Using Software			
Testing Effectively, Diagnosing Software			
Testing Problems			
Why Change Fails, How to Make Change	1. Illustrate the necessity of Change		
Succeed	management system – developing impact		
	analysis document and its importance (C3).		
	· · · · ·		
Take Responsibility, Do Everything Out in	1. Understand the role of management in		
the Open, Manage the Organization,	motivating the team, finer points of managing		
Manage Your Team	the team (C2)		
Prevent Major Sources of Project Failure,	1. Describe the differences of managing the		
Management Issues in Outsourced	outsourced project, typical point of		
Projects, Collaborate with the Vendor	conflicts(C2)		
Frojects, conaborate with the vendor	2. Review of the project management process		
	(C2)		
Life Without a Software Process, Software	1. Analyse the projects without process and		
Process Improvement, Moving Forward	continuous process improvements initiatives		
	needed for success of the project (C4)		
Learning strategy	Contact hours Student learning		
	time (Hrs)		
Lecture	30 60		

Quiz			02	04		
Small Group Discussion (So	GD)		02	02		
Self-directed learning (SD	-		-	04		
Problem Based Learning (F			02	04		
Case Based Learning (CB	L)		-	-		
Revision			02	-		
Assessment			06	-		
Internal practical Test			Sessional exa	mination		
Theory Assignments			End semester examination			
Lab Assignment & Viva			Viva			
Nature of assessment	CO 1	CO 2		CO 3		
Sessional Examination 1	*					
Sessional Examination 2	*			*		
Assignment/Presentation	*	*				
End Semester Examination	*	*		*		
• En	d-Semester	Feedback				
1. "Applie	d Software P	roject Manag	ement" By Jenr	ifer Greene, Andrew		
Stellma	Stellman (O'Reilly Publications) 2005.					
2. "The Ar	t of Project I	Management'	' By Scott Berku	n (O'Reilly Publications)		
2005.						
2. "The Ar				n (O'Reilly Publications)		

					Mast	er of En	igineeri	ng (ME) – '	VLSI Desi	gn		
					Physic	cal Desig	gn					
	: EDA-610											
		2020-2	2021			F		r, Semester				
							Basic k	nowledge o	of digital de	esign		
		This Co	ourse pi	rovides	insight	on						
		1.	This co	ourse p	rovides	the co	ncept o	f CMOS cir	cuit and l	ayout des	sign	
		2.	This co	ourse p	rovides	s the kn	owledg	e of floor	planning,	placeme	nt, clock	
			tree sy	nthesi	s, and r	outing						
		3. This course provides the concept of parasitic extraction of layout								t		
		4.	This co	ourse p	rovides	the kno	owledg	e testing ir	n VLSI Des	ign		
		5.	This co	ourse p	rovides	the co	ncept o	f fault moo	delling and	d fault sir	nulation	
		6.	This co	ourse p	rovides	the kno	owledg	e of DFT ar	nd BIST in	VLSI desi	gn	
			oe CMC)S logic	c gate c			udents wil			tes, give	
						in floo	rolan c	tep, placer	mont cla	ck trop o	nthocic	
		-	-		on of la			tep, placei	nent, cio	ck liee s	/11112515,	
		Classify	y digita	testin	g, give e	example	es of fau	ılt modellir	ng and fau	lt simulat	ion, test	
		single	stuck a	t fault	s, desc	ribe de	sign for	testabilit	y, ad-hoc	DFT, sca	n based	
		design	s, built-	in self-	test							
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10	PO 11	
CO 1	*		*									
CO 2	*	*										
CO 3		*	*									
		1	1		1	1	1	1	1	1	1	

	be University under Section 3 of the UGC Act, 1956)						
Content	Competencies						
CMOS logic gate design- Basic physical	1. Recall CMOS structure (C1)						
design of simple gates - CMOS logic	2. Describe logic gate design (C2)						
structures - Clocking strategies	3. Give examples of physical design of						
	combinational circuit (C2)						
	4. Explain clocking strategies (C2)						
Floorplan .	1. Explain technology file (C2)						
	2. Describe different formats of circuit						
	description						
	3. Explain design constraints (C2)						
	4. Explain the design planning, clock planning						
	and power planning (C2)						
	5. Describe macro placement (C2)						
Placement.	1. Define standard cells in ASIC design (C1)						
Placement.	θ (
	2. Describe standard cell mapping onto ASIC						
	components (C2) 3. Estimate core area and standard cell						
	 Estimate core area and standard cell placement region (C6) 						
Clock tree synthesis	1. Explain clock tree algorithms (C2)						
Routing.	1. Explain special routing algorithms (C2)						
	2. Describe special routing algorithms (C2)						
	3. Explain detail routing algorithms (C2)						
RC extraction.	1. Describe extraction procedure (C2)						
	 Summarize the physical design flow (C6) 						

Back annotation	1.	Summarize the physical of	design flow (C6)
,			
Introduction to Digital Testing - Fault	1.	Differentiate verification	and testing (C2)
modeling - Fault Simulation - Testing for	2.	Explain test concerns (C2	2)
Single stuck faults - Design For	3.	Describe fault modelling	and simulation (C2)
Testability (DFT) - Ad-Hoc DFT - Scan	4.	Explain ATE architecture	and instrumentatior
based designs - Built-In Self-Test (BIST)		(C2)	
	5.	Explain and give example	es of stuck at fault
		(C2)	
	6.	Describe making circuits	testable (C2)
	7.	Describe testability inser	tion (C2)
	8.	Explain testability of com	binational and
		sequential circuits (C2)	
	9.	Explain memory based B	IST, differentiate
		BIST types (C2)	
	10	. Describe test pattern ger	neration (C2)
Learning strategy		Contact hours	Student learning
			time (Hrs)
Lecture		30	60

		time (Hrs)
Lecture	30	60
Quiz	02	04
Small Group Discussion (SGD)	02	02
Self-directed learning (SDL)	-	04
Problem Based Learning (PBL)	02	04
Case Based Learning (CBL)	-	-
Revision	02	-
Assessment	06	-

_

Internal practical Test		Sessional examination								
Theory Assignments		End semester examination								
Lab Assignment & Viva		Viva								
Nature of assessment	CO 1	CO 2	CO 3							
Sessional Examination 1	*									
Sessional Examination 2		*	*							
Assignment/Presentation	*									
End Semester Examination	*	*	*							
•	End-Semester Feedback									
1. Nei	1. Neil H. E. Weste, David Harris, Kamran Eshraghian, "Principles of									
	 CMOS VLSI Design: A systems perspective", Third Edition, Addison Wesley,2008 2. Majid Sarrafzadeh, C. K. Wong , "An introduction to VLSI physical design", McGraw Hill, 1996, ISBN 0070571945, 9780070571945, 334 									
2. Ma										
design										
pages										
3. Kho	3. Khosrow Golshan, "Physical design essentials: an ASIC design									
impler	implementation perspective", Springer, 2007, ISBN 0387366423,									
97803	9780387366425, 211 pages									
4. Bar	4. Ban P. Wong, Anurag Mittal, Yu Cao, Greg Starr Contributor Ban P.									
Wong	Wong, Anurag Mittal, Yu Cao, "Nano-CMOS circuit and physical									
design	design", John Wiley and Sons, 2004, ISBN 0471466107,									
97804	9780471466109, 393 pages									

					Mas	ter of Er	ngineeri	ing (ME) ·	– VLSI De	esign			
							ogic Syn	thesis		_			
		EDA-	611										
2020-2021						First Year, Semester 2							
							Con	cepts of [Digital De	esign			
		This Course provides insight on											
		This course provides the concept of logic synthesis of combinatio circuits											
		 This course provides the concept of logic synthesis of sequential circuits This course provides the concept of technology mapping 											
	On successful completion of this course, students will be able to												
Describe logic synthesis process													
Explain procedure involved in logic synthesis of combinationa circuits										nal and se	equential		
	Classify multilevel logic synthesis and technology mapping												
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11		
CO 1	*												
CO 2		*											
CO 3			*										
Content						Competencies							
Introduction to logic synthesis					 Recall sets and relations(C1) Describe Boolean function (C2) 								
Introduction Boolean algebra concepts					 Explain Boolean algebra concepts (C2) Solve combinational circuit problems using k- map (C3) 								

Minimization using k-map Minimization using Tabular method Consensus theorem Iterative Consensus theorem Recursive computation Unate covering problem a) Reduction technique b) MIS algorithm c) Branch and bound algorithm	 Explain Tabular method, Iterative Consensus theorem, Recursive computation, and Unate covering problem (C2) Solve problems on Tabular method, Iterative Consensus theorem, Recursive computation, and Unate covering problem (C3)
IntroductionBasics of FSM conceptMinimization of completely specifiedFSMa) Equivalent partition algorithmMinimization of Incompletely specifiedFSMa) Compatible tableb) Maximum compatiblesc) Prime compatiblesd) Binate covering problemFSM traversal algorithmsa) Depth first searchb) Breadth first searchc) Shortest path	 Explain concept of FSM (C2) Explain concept of completely specified FSM (C2) Solve completely specified FSM problems using equivalent partition algorithm (C3) Explain Incompletely specified FSM (C2) Solve problems using Compatible table, Maximum compatibles, Prime compatibles, Binate covering problem (C3) Explain FSM traversal algorithms (C2)

ARED BY CDeemea to		versity under section 5 of the UGC Act, 1956				
State encoding and optimization						
Introduction Algebraic and Boolean Division Kernels and Cokernels	1. 2. 3.	networks and algebraic operations (C2) 2. Reproduce switching functions in factored form (C1) 3. Explain division with Kernels and Co-Kernels (C2)				
Algebraic and Boolean resubtitution methods		 Explain decomposition and restructuring (C Solve problems using above algorithms (C3 				
 a) Graph covering and Technology mapping b) Tree covering by Dynamic programming c) Decomposition d) Delay optimization and Graph covering 	1. 2. 3.	01	oblem (C2)			
Learning strategy		Contact hours	Student learning			
			time (Hrs)			
Lecture		36 72				
Seminar		-	-			
	1					

Lecture	36	72
Seminar	-	-
Quiz	-	-
Small Group Discussion (SGD)	-	-
Self-directed learning (SDL)	-	-
Problem Based Learning (PBL)	-	-
Case Based Learning (CBL)	-	-
Clinic	-	-

Practical			36	72			
			50	12			
Revision			-	-			
Assessment			6	-			
Internal practical Test			Sessiona	examination			
Theory Assignments			End sem	ester examination			
Lab Assignment & Viva			Viva				
Nature of assessment	CO 1	CO 2		CO 3			
Sessional Examination 1	*						
Sessional Examination 2		*		*			
Assignment/Presentation		*					
End Semester Examination	*	*		*			
Laboratory examination							
• E	End-Semes	ter Feedback					
1. "Logic	: Synthesis a	and Verification	Algorithms",Ga	ry D. Hachtel and Fabio			
Somenzi	Somenzi (Kluwer Academic Publishers)						
2. "Logic	: Minimizati	ion Algorithms Fo	or VLSI Synthesi	s" ,Robert K. Brayton			
,Gary D.	Hachtel, Cu	rtis T. McMullen	and Alberto L.	Sangiovanni-Vincentelli			
(Kluwer /	Academic P	ublishers)					

					-	~						
						-		g (ME) – VL	-			
					Wirel	ess Com	municat	ions and A	ntenna l	Design		
		EDA-613										
		2020 -	2021			F		, Semester				
								asic know	vledge o	of electro	nics and	
						nunicatio	on					
		This co	ourse pr	ovides	insight	on						
		٠	• Wireless communication system and evolution of different systems									
			and standards									
		•	Recent wireless communication technologies used for communication									
		•	• Architecture, functioning, protocols, capabilities and application of									
			various wireless communication networks									
		•	Design	, types	, functi	oning, a	and app	lications o	of anten	nas		
		At the end of the course student shall be able to										
		Describe wireless communication systems and different wireless communication standards								wireless		
		Identif	Identify various wireless communication technologies									
		Explain the architecture, functioning, protocols, capabilities and application of various wireless communication networks.										
		Demor	nstrate	multipl	e acces	s techn	iques fo	or wireles	s comm	unication		
		Explain design of antennas including types, functioning, and applications										
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	
CO 1	*											
CO 2		*										
CO 3			*									

CO 4				*										
CO 5				*										
Conter	nt					Competencies								
Definit	ion of	wireles	s comn	nunicat	ion,	1.	Define	wireless c	ommuni	ication (C	1)			
various	s gener	ations	and st	andard	s in	2.	Describ	e three d	different	generat	tions of			
cellula	r comm	unicatio	on syste	em			wireles	s commun	ication (C2)				
						3.	Illustrat	te GPS, wir	eless lo	cal loop,	cordless			
							phone,	paging sys	tems, ai	nd RFID (C3)			
netwo Blueto	rking, oth tec	of s WIMA hnolog	X, W y, the	/i-Fi, concep	and ot of	2.	networ technol Study V Wireles (C3) Study tl Wireles Disadva		AX, Wi-I outer, W r, Micr f Wireles s, A of	Fi, and Bl /ireless A rowave, ss Devices	uetooth dapters, Infrared s, Radio,			
-	le acce: unicatic	ss tech	niques	in wire	less		commu		modes Frequenc	and I	Multiple or Code Multiple			

	 Spatial Division Multiple Access, Beam Division Multiple Access (BDMA), Code Division Multiple Access (C2) 3. Explain Frequency Reuse, Channel Assignment, Handoff, Cell Splitting, Cell Sectoring, Micro Zone Method (C2)
Define wireless personal area networks, and different communication standards	 Compare Bluetooth, UWB and ZigBee modes of communication (C4) Describe IEEE 802.11, network architecture, medium access methods, WLAN standards (C2)
Design Challenges in Ad-hoc wireless networks, concept of cross layer design, security in wireless networks, energy constrained networks	 Define Ad-hoc wireless networks (C1) Explain cross layer design and security in wireless networks (C2) Describe mobile network layer protocol (C2)
Properties of Antennas, Radiation Structures, Arrays, Dipoles, Slots, and Loops	 Describe antennas (C1) Explain Antennas for Various Applications (C2) Describe Dipole, Monopole, Loop and Slot Antennas, Linear and Planar Arrays, Microstrip Antennas, Helical Antennas, Horn Antennas, Reflector Antennas (C1)

Learning strategy	Contact	t hoi	urs	S	Student learning time (Hrs)			
Lecture		30	n			60		
Quiz	<u></u>	02				04		
Small Group Discussion (SG		02	2			02		
Self-directed learning (SDL	.)	-				04		
Problem Based Learning (PE	BL)	02	2			04		
Case Based Learning (CBL))	-				-		
Revision		02	2			-		
Assessment		00	6			-		
				1				
Internal practical Test				Se	ssional	al examination		
Theory Assignments			End sen			nester examination		
Lab Assignment & Viva			Viva					
	CO 1			<u> </u>	60.4			
Nature of assessment	CO 1	CO 2		03	CO 4	CO 5		
Sessional Examination 1	*	*						
Sessional Examination 2			*		*			
Assignment/Presentation	*	*	* * *		*			
End Semester Examination	*	*	*		*	*		
• Enc	l-Semes	ster Feedback						
		smith, "Wirele ress, 2005.	SS	Con	nmunic	ations", Cambridge		

2. Sanjay Kumar, "Wireless Communication the Fundamental and
Advanced Concepts" River Publishers, Denmark, 2015 (Indian
reprint).
3. Vijay K Garg, "Wireless Communications and Networks", Morgan
Kaufmann Publishers an Imprint of Elsevier, USA 2009 (Indian
reprint)
4. J. Schiller, "Mobile Communication" 2/e, Pearson Education, 2012.
5. Iti Saha Misra, "Wireless Communication and Networks : 3G and
Beyond", 2/e, McGraw Hill Education (india) Private Ltd, New
Delhi, 2013.
6. C.A. Balanis, Antenna Theory – Analysis and Design, John Wiley,
2005
7. J.D. Kraus and R.J. Marhefka, Antennas, McGraw Hill, 2003

	1							
	Master of Engineering (ME) – VLSI Design							
	Machine learning for VLSI Design							
EDA-614								
2020 - 2021	First Year, Semester 2							
	Basic Programming							
This course provides	insight on							
	rning, applications, techniques, design issues and o machine learning							
Fundamental	knowledge about concept learning, hypothesis and bias							
Neurons and	biological motivation, activation functions and threshold							
	vised and unsupervised learning, perceptron network							
models in Art	ificial Neural Networks							
Learning from	n unclassified data using clustering techniques							
Support Vector	or Machines for linear and non-linear classification							
Deep Learnin	Deep Learning and Reinforcement Learning algorithms							
Application o	f machine learning for VLSI design steps							
At the end of the cou	irse student shall be able to							
Identify the goals, an techniques.	oplications, types and design issues of machine learning							
Describe activation f	functions, weights and threshold units used in artificial							
neural networks, su	pervised and unsupervised learning, gradient descent							
approach, types of p	erceptron models, overfitting							
	al neural network models, clustering models, support							
vector classifier mod	dels, Deep learning models and reinforcement learning							
models								
Design back propa	gation neural network, K-means and agglomerative							
clustering, deep n	eural network, reinforcement learning models and							
selection of a machir	ne learning algorithm for the given data analysis.							
Describe machine le	arning for VLSI design steps							

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2		*									
CO 3			*								
CO 4				*							
CO 5				*							
Conter	nt					Compet	encies				
Definition of Machine Learning, Goals and applications of machine learning, Basic design issues and approaches to machine learning, Types of machine learning techniques						2. [\ 3.	Describe which m appropr Ilustrate	Machine L e about a nachine le iate. (C2) e differe	ny three earning a ent typ	e applicat	es seem
The concept learning task, Concept learning as search through a hypothesis space, General-to-specific ordering of hypotheses, Finding maximally specific hypotheses, Version spaces and the candidate elimination algorithm, Inductive bias.					nesis g of cific	2. <i>1</i>	space (C Apply di general	concept (4). ifferent a and most hing exam	lgorithm specific	s to obta hypothes	iin most
•		conce ive indung the		of deci				ecision tr esis space		ithm to	find the

attribute, Entropy and information gain, Searching for simple trees and computational complexity.	 Construct decision tree machine learning algorithm (C5) 5 solution the smallest of scheme investigation
computational complexity.	
	3. Explain the method of choosing training
	examples and target function in the desigr
	of a machine learning system (C2)
	4. Explain different validation technique to
	find the accuracy in training and testing of
	data set (C5)
Probability theory and Bayes rule,	1. Write the applications of Bayes theorem
Naive Bayes learning algorithm -	(C3)
Parameter smoothing, Generative vs.	2. Describe the use of Logistic Regression ir
discriminative training, Logistic	Machine Learning (C2)
regression, Bayes nets and Markov nets	3. Predict the target value for the new
for representing dependencies	instance using Naïve Bayes classifier. (C3)
Neurons and biological motivation,	1. Relate biological neurons with artificia
Activation functions and threshold	neurons and the motivation for ANN
units, Supervised and unsupervised	development. (C1)
learning, Perceptron Model:	2. Distinguish Supervised and unsupervised
representational limitation and	learning (C2).
gradient descent training, Multilayer	3. Describe about error reduction techniques
networks and back propagation,	in used Artificial Neural Networks based
Overfitting	learning (C2)
	4. Write the usability of different activation
	functions for ANN learning system. (C3)
	5. Describe the architecture
	of various perceptron networks. (C2)

TRED BY Y (Deemed to b	be University under Section 3 of the UGC Act, 1936)
Learning from unclassified data,	1. Write the different methods of learning
Clustering. Hierarchical Agglomerative	from unclassified data (C3).
Clustering, Non- Hierarchical Clustering	2. Explain the operations
- k-means partitional clustering,	of various clustering models in machine
Expectation maximization (EM) for soft	learning (C5)
clustering, Semi-supervised learning	3. Describe the methods used for measuring
with EM using labelled and unlabelled	dissimilarity between two clusters. (C2)
data.	4. Apply clustering techniques for data
	analysis. (C3)
Introduction to Deep Learning,	1. Define Deep Learning. (C1)
Introduction to convolutional Neural	2. Describe the applications of deep learning.
Network (CNN), CNN Architecture and	(C2)
layers, N-arm Bandit Problem,	3. Explain the architecture of Deep Neural
Calculating the Value Function,	Network and CNN (C5)
Associative Learning	4. Explain the concept of Multi-Armed Bandit
	Problem (MABP). (C2)
	5. Outline the learning process
	and characteristics of reinforcement learning
Taxonomy, Machine Learning for	1. Describe Machine Learning steps for
Lithographic Process Models, Masks,	fabrication steps (C1)
and Physical Design, Yield	2. Explain aging analysis using machine
Enhancements,	learning approach (C2)
Machine Learning based Aging Analysis,	
Energy-Efficient Design of Advanced	3. Describe energy-efficient systems based
Machine Learning Hardware	on machine learning (C1)

		ssional exam	(Hrs) 60 04 02 04 - - - - - nination						
	02 02 - 02 02 06 Se	ssional exam	04 02 04 04 - - -						
	02 - 02 - 02 06 Se	ssional exam	02 04 - - -						
	- 02 - 02 06 Se	ssional exam	04 04 - - -						
(- 02 06 Se	ssional exam	-						
(- 02 06 Se	ssional exam	-						
	06	ssional exam	- - -						
	06	ssional exam	- -						
	Se	ssional exam	- nination						
		ssional exam	nination						
		ssional exam	nination						
·		ssional exam	nination						
		ssional exam	nination						
		ssional exam	nination						
	Er	d semester e	examination						
	Vi	va							
CO 2	CO 3	CO 4	CO 5						
*									
	*	*							
*	*	*							
*	*	*	*						
er Feedback	<u> </u>	<u> </u>							
)6). Pattern	Recognit	ion and Ma	chine Learning.						
ger-Verlag.									
Berlin: Springer-Verlag.									
	* * ter Feedback 06). Pattern	* * * * * * ter Feedback 06). Pattern Recognit ger-Verlag.	* * * * * *						

dman, The Elements
ce,and Prediction
(in Li, eds. Machine
pringer, 2019.
,

					Maste	er of Eng	gineerin	g (ME) – VLSI	Design						
						preneur			0						
	:	ENP-6	01			-	-								
		2020 -	2021			F	irst Yea	r, Semester 2							
Synop	sis:	This co	ourse in	troduce	es stude	ents to th	he theor	ry of entrepro	eneurshi	p and its p	ractical				
		implen	nentatio	on. It f	focuses	on dif	ferent	stages relate	ed to th	e entrepre	eneurial				
		-						vation, mon		-					
		manag	ement	as well	l as str	ategies	that in	nprove perfo	ormance	of new b	ousiness				
		venture	es. Cen	tered of	n a mix	ture of	theoret	ical explorati	ion as we	ell as case	studies				
		of real-	-world e	exampl	es and g	guest lea	ctures,	students will	develop	an unders	tanding				
		of successes, opportunities and risks of entrepreneurship. This course has an													
		interdis	interdisciplinary approach and is therefore open to students from other Majors.												
Cours	e														
Outco	mes	On successful completion of this course, students will be able to:													
(COs)	:		-												
CO 1:		To imp	oart kno	owledge	e on the	e basics	of entr	epreneurial s	kills and	l compete	ncies to				
001.		provide	e the pa	rticipa	nts with	n necess	ary inp	outs for creati	ion of ne	ew venture	es.				
CO 2:		To fam	niliarize	the par	rticipan	ts with	the con	cept and ove	rview of	entrepren	eurship				
CO 2.		with a	view to	o enhan	ce entre	epreneu	rial tale	ent							
CO 3:		To app	raise th	ne entre	preneu	rial proc	cess sta	rting with pr	e-ventur	e stage					
CO 4:		To Cre	ate and	l exploi	it innov	ative bu	isiness	ideas and ma	arket opp	oortunities					
CO 5:		To Bu	ild a m	nind-set	t focusi	ing on	develoj	ping novel a	nd uniq	ue approa	ches to				
0.5.		market	opport	unities											
CO 6:		To exp	plore n	new vis	stas of	entrep	reneurs	hip in 21st	century	environr	nent to				
		genera	te innov	vative b	ousines	s ideas t	through	a case studies	5.						
Mapp	ing of (COs to 1	POs												
COs	<i>PO 1</i>	<i>PO</i> 2	<i>PO 3</i>	<i>PO</i> 4	PO 5	PO 6	<i>PO</i> 7	PO 8	<i>PO</i> 9	PO 10	PO 11				
CO 1	*														
CO 2				*											
CO 3			*												
CO 4						*									
		1	1	1	1	i	i	1	1	1	i				

CO 5	*									
CO 5										
CO 6	*									
Course content and outcomes:										
Content	Competencies									
Unit 1: Introduction to Entrepre	eurship									
Meaning and Definition of	1. Explain the meaning of Entrepreneursh	nip (C1)								
Entrepreneurship-Employment vs	2. Discuss the theories of Entrepreneursh	ip (C1)								
Entrepreneurship, Theories of	3. Discuss the approaches to Entrepren	eurship								
Entrepreneurship, approach to	(C1)									
entrepreneurship, Entrepreneurs VS										
Manager										
Unit 2: Entrepreneurial Traits										
Personality of an entrepreneur, Types of	1 Discuss the Demonstity traits of antron	onour								
	1. Discuss the Personality traits of entrepreneurs.									
Entrepreneurs	(C2)									
Unit 3: Process of Entrepreneurs	nip									
Factors affecting Entrepreneurship	1. Identify the fundamentals and respons	ibilities								
process	of entrepreneurship (C2)									
	2. Exemplify one's capabilities in relation	n to the								
	rigors of successful ventures (C3)									
	3. Identify and differentiates the different									
	characteristics and competencies of an									
	entrepreneurs (C2)									
Unit 4: Business Start-up Process										
Idea Generation, Scanning the	1. Explain the Process of Business start u	ıp (C1)								
Environment, Macro and Micro	2. Develop creativity and critical thin	king in								
analysis	identifying opportunities (C5)									
	3. Apply innovative approaches in envi	sioning								
	ones entrepreneurial career (C3)									
Unit 5: Business Plan writing										
Points to be considered, Model Business	1. Identify different business models (C3)								
plan	2. Describe different parts of a business p	lan(C2)								
-	• •									

Unit 6: Case studies									
Indian and Interna	ational	1. Per	orm	self-as	sessme	nt	and	analyse	
Entrepreneurship	entrepreneurial personal traits and								
		competencies (C4)							
		2. Eva	luate on	eself a	nd plan	i coi	urses of a	action to	
		help	dev	velop	one'	S	entrep	reneurial	
		cha	acteristi	ics and	l compe	etend	cies. (C5)	
Learning strategies, contact ho	irs and s	student lea	rning ti	me					
Learning strategy	С	ontact h	ours		Si	tudent le	arning		
						time (I	Hrs)		
Lecture		30				60			
Quiz		02				04			
Small Group Discussion (SC		02				02			
Self-directed learning (SDI	-					04			
Problem Based Learning (PI		02				04			
Case Based Learning (CBI		-				-			
Revision		02							
Assessment	Assessment					-			
TOTAL		44				74			
Assessment Methods:									
Formative:				mmat					
Internal practical Test			Sessional exami			nation			
Theory Assignments			End semester exam				nination		
Lab Assignment & Viva		Viva							
Mapping of assessment with Co									
Nature of assessment	CO 1	CO 2	CO) 3	CO 4		CO 5	CO 6	
Sessional Examination 1	*	*							
Sessional Examination 2			*		*				
Assignment/Presentation							*	*	

End Semester Examin	ation	*	*	*	*	*	*				
Feedback Process	• En	d-Semest	er Feedback		-	1					
Reference Material	1. NV	/R Naic	lu and T.	Krishna	Rao, "M	lanageme	ent and				
	En	Entrepreneurship", IK International Publishing House Pvt. Ltd									
	20	2008.									
	2. Me	ohanthy	Sangram	Keshar	ri, "Fun	damental	s of				
	En	trepreneu	rship", PHI P	ublications	s, 2005						
	<i>3</i> . Bu	tler, D. (2006). Enterp	prise plann	ing and dev	velopmen	nt. USA:				
	Els	sevier Ltd	l. Gerber, M.	E. (2008)	Awakening	the entre	epreneur				
	wi	thin. NY:	Harper Collin	ns.							

Name	of the P	rogram	:		Maste	er of Eng	ineering	(ME) – VL	SI Desigr	า		
	e Title:	8			-	SI Design Lab						
		EDA 60	4L		uctor	6						
		r: 2019						Semester 2	2			
	Credits:		_0_0					Electronics		Systems		
			ourse p	rovides	insight	-			<u> </u>			
		On suc	cessful	comple	etion of	f this co	urse, st	udents wi	ll be ab	le to		
		-				c buildi ask layc	-	ks of CM	OS anal	og circuit	s at the	
Get hands-on in design and simulate CMOS integrated circuits usin											s using	
Computer Aided Design (CAD) Tools.												
<u> </u>	001	00.2	00.2	DO 4			007			DO 10	00 11	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	
CO 1	*			*								
CO 2		*			*	*						
Conte	nt						Com	petencies				
1.	To de	sign CM	IOS lay	outs fo	r resist	ors and	1	. design	CMOS I	ayouts fo	r	
	capaci	tors and	d simul	ate the	ir beha	viour.		resistors and capacitors (C5)				
		OSFET s and pr		s for	various	circuit	1			T for vario rations (C		

Design, simulate and verify current mirror circuits for different current and voltage specifications.	 Design and verify current mirror circuit (C5)
Design, simulate and verify different types of voltage and current reference circuits for different currents and voltages.	 Design and verify different current reference circuits for different currents and voltages. (C5)
Design, simulate and verify Common Source, Common Gate, Common Drain single stage CMOS amplifiers with different types of loads.	 Design and verify Common Source, Common Gate, Common Drain single stage CMOS amplifiers with different types of loads.(C5)
Design, simulate and verify a simple differential amplifier with passive resistor, current mirror and current source loads.	 Design and verify a simple differential amplifier with passive resistor.(C5)
Simulate and carryout noise analysis of simple amplifier circuits and plot noise characteristics.	 Design noise analysis of simple amplifier circuits.(C5)
Design, simulate and verify a simple 2-stage Operational amplifier	 Design and verify a simple 2- stage Operational amplifier .(C5)

Design, simulate and verify a few in nonlinear analog circuits	important		Design and analog circ		linear		
Design, simulate and verify simple capacitor circuits	switched		Design and switched ca				
Design, simulate and verify a few DAC circuits	and ADC		Design and and ADC ci	-	w DAC		
Learning strategy	Contact	hours		Student	learning		
Lecture	12	12			time (Hrs)		
Seminar	-			-			
	-						
Quiz	-			-			
Small Group Discussion (SGD)	-			-			
Self-directed learning (SDL)	-			-			
Problem Based Learning (PBL)	-			-			
Case Based Learning (CBL)	03			-			
Clinic	-			-			
Practical	24			-			
Revision	03			-			
Assessment	06			-			
			Constant				
Internal practical Test			Sessional	examinatio	01)		

Theory Assignments		End semester examination	
Lab Assignment & Viva			Viva
Nature of assessment		CO 1	CO 2
Sessional Examination 1		*	*
Sessional Examination 2		*	*
Assignment/Presentation		*	*
End Semester Examination		*	*
Laboratory examination		*	*
•	ack		
	1. Cac	lence user manua	Ι

				Mast	er of En	ginoori	ησ (MF) _		sign				
		Master of Engineering (ME) – VLSI Design Low Power VLSI Design Lab											
	EDA 6051	L			0.000	01 0 0018							
	2020-2	2021			Firs	st Year, S	Semester	2					
				-	n, Digita simulati	al, and A		-	Low pov cs, familia				
	This Co	ourse p	rovides										
		-		-	nts of CI	MOS cire	cuits						
		-		tic powe									
	3. Circ	uit tech	niques	for dyr	namic po	ower re	duction						
	4. Desi	gn of lo	ow pow	ver buil	ding blo	cks							
On successful completion of this course, students will be able to													
Design circuits to reduce static power													
	Impler	nent dy	namic	power	reductio	on techr	niques						
	Apply	low pov	wer tec	hnique	s to des	ign low	power ci	rcuits					
COs PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11			
CO 1 *													
CO 2	*	*											
CO 3			*	*									
			·			·	·		·	·			
Content				(Compet	encies							
		_		I									
		At the end of the topic students should be able											
Introduction			_										
Introduction Overview of			on in		to :		·						

components, Leakage current	1. Experiment CMOS digital blocks and find
components,	various power dissipation components(C4)
Circuit techniques for leakage power	2. Apply leakage reduction techniques to sample
reduction	gates and flip-flops (C3)
Technology scaling for dynamic power	1. Design a digital module and implement
reduction	voltage scaling technique for power
Voltage scaling approaches	reduction.(C5)
Glitch power, Cock gating	2. Experiment clock gating for power reduction
Adiabatic techniques for low power	for the above module(C4)
Logic optimization for low power	1. Design basic digital VLSI modules using low
System level issues in multi-voltage	power techniques (C5)
designs	
Low power design of building blocks	

Learning strategy	Contact hours	Student learning		
		time (Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03	-		

Clir			-	-		
Practical				24	-	
Revis	sion			03	-	
Assess	ment			06	-	
Internal practical Test	t			Sessional ex	xamination	
Theory Assignments				End semest	er examination	
Lab Assignment & Viv	/a			Viva		
Nature of assessment	t	CO 1	CO 2		CO 3	
Sessional Examination	n 1	*				
Sessional Examination	n 2		*		*	
Assignment/Presenta	tion				*	
Laboratory Examinati	on		*		*	
	• End	l-Semeste	er Feedback		<u> </u>	
	1. "Low-Po	ower CM	OS VLSI Circui	it Design",Kai	ushik Roy and Sharat C.	
	Prasad, Wiley-Interscience.					
	2. "CMOS	Low Pow	er Digital Des	sign", A. Chan	ndrakasan & R.	
	Brodersen	, Kluwer A	Academic Put	os. 1995.		
	3. "Low Po	ower Desi	ign Methodol	ogies", J. Rab	aey & M. Pedram, ,	
	Kluwer Aca	ademic Pu	ubs. 1996.			
	4. "Low –	Power Di	gital VLSI Des	ign, Circuits a	and Systems", Bellaour	
	& M.I. Elar	nstry <i>,</i> Klu	wer Academi	ic Publishers,	1996.	
	5. S. Imam	n & M. Pe	dram, Kluwer	r Academic P	ublishers, 1998.	

6. "Logic synthesis for Low – power VLSI Designs", B.G.K.Yeap,
"Practical Low Power Digital VLSI Design", Kluwer Academic
Publishers, 1998.

					Maste	er of Eng	ineerin	g (ME) – V	VLSI Desi	gn			
					Unive	rsal Verif	ication N	/lethodolo	gy Lab				
	:	: EDA 606											
		2020-2	2021			Fir	st Year,	Semester	2				
		This Co	ourse p	rovides	insight	on							
		1.	To stu	dy the	basic stı	ructure o	of UVM.						
		2.	To und	derstan	d UVM	library b	asics.						
		3.	To Stu	dy the	basic co	oncepts o	of OOPs	•					
		4.	To und	derstan	id the di	fferent o	compon	ents of ve	erificatio	n environ	ment.		
		5.	To ur	ndersta	nd the	conce	pt of	Register	Abstrac	tion Lay	er, TLV		
		Сог	mmuni	cations									
		On successful completion of this course, students will be able to											
		Model a scenario for Verification of a DUT in UVM.											
		Implement a driver, monitor, checker, test cases in UVM verification											
		enviro	nment.										
		Implement Register Abstraction Layer and TLM communications.											
		Design test bench to verify the functionality of a design.											
		Design	a VIP f	or an II	P as a pr	oject.							
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11		
CO 1	*		*										
CO 2	*				*								
CO 3		*			*								
	*	1	*										
CO 4													

Content Competencies UVM overview 1. Practice UVM packages and libraries in project environment (C3) **Object Oriented Programming** 1. Experiment inheritance, polymorphism, abstraction and encapsulation using System Verilog in UVM. (C4) **UVM** library basics 1. Experiment driver, sequencer and connect driver and sequencer. (C4) Interface UVCs 1. Experiment monitor and collector, UVM sequences. (C4) Component Configuration and Factory 1. Practice Component Virtual System Verilog Interfaces with uvm_config_db. (C3) VM Callback 1. Constructing Components and Transactions with UVM Factory. Simple Testbench integration 1. Experiment Tests Configure to Components (C4)

(Deemed to be University under Section 3 of the UGC Act, 1956)

Stimulus generation topics	1. Experiment Test	s to Override		
	Components	with Modified		
	Behaviour.(C4)			
Register Abstraction Layer		ponent Functional		
		r Defined Callbacks.		
	(C4)			
System UVCs and Testbench Integration	1. Design verification	environment for		
	RAM.(C5)			
TLM Communications	1. Design verification e	environment for MIPS		
	processor (C5)			
Learning strategy	Contact hours	Student learning		
Leanning strategy	contact nours	time (Hrs)		
Lecture	12	-		
Seminar	-			
Quiz	-	-		
Small Group Discussion (SGD)	-			
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03	-		
Clinic	-	-		
Practical	24	-		
Revision	03	-		
Assessment	06	-		

Internal practical Test					Sessional examination			
Theory Assignments				End se	emester ex	amination		
Lab Assignment & Viv	/a			Viva				
Nature of assessment	t	CO 1	CO 2	CO 3	CO 4	CO 5		
Sessional Examination	Sessional Examination 1		*					
Sessional Examination	n 2			*	*			
Assignment/Presenta	tion					*		
Laboratory examinati	on	*	*	*	*	*		
	• Enc	l-Semester	r Feedback		•			
	1. Sharon	Rosenberg	, Kathleen Me	eade, "A	Practical (Guide to Adopting		
	the Universal Verification Methodology (UVM)", Lulu publishers, 2010.							
	2. Vanessa	rted with	n UVM: A l	oeginner's guide",				
	Verilab publisher, 2013.							
	3. UVM Co	ademy, 2	2013.					
	4. UVM Us	ser's guide	, Accellera, 20	11.				

			Maste	er of Eng	ineering	(ME) – VL	SI Desigr	1		
				ing for V	-	()				
EDA 607	7L									
2020-	2021			F	irst Year	Semester	2			
					Problen	n solving, l	basic pro	gramming	3	
This C	ourse pr	ovides	insight	t on						
2. 3.	 Study of scripting languages such as Bash and Perl in Linux environment. The study of usage of scripting languages in VLSI field. To provide the basic knowledge about different tools available to automate the task 									
On su	On successful completion of this course, students will be able to									
	Experiment shell script programmatically using different features and debugging the code									
Opera	Operate SED & AWK commands to do more complex task in easy way									
	Experiment PERL scripts that create and change scalar, array and hash variables							nd hash		
COs PO 1 PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	
CO 1 *										
CO 2	*									
CO 3 *			*							
			1				1	1		
Content			0	Compete	encies					

(Deemed to be University under Section 3 of the UGC Act, 1956)

Essentials	 Understand the basic kernel, operating system Able to create user and 	tem (C2).		
Introduction to Scripting: Shell, Tcl/tk, perl, python	 Able to write shell sci script (C3) Understand the impo in real wold. (C2) 			
Awk utility	1. Generate report using awk script (C3)			
Sed & Make	 Perform file handling script (C4) Appraise the importa 			
Perl	 Create pattern matching , report generation and perform file handling function using Perl Script (C3) 			
Learning strategy	Contact hours	Student learning time (Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		

Self-directed learning		-		-			
Problem Based Learn		-		-			
Case Based Learning	(CBL)		03		-		
Clinic			-		-		
Practical			36		-		
Revision			-		-		
Assessment			06		-		
Internal practical Test				Sessional	examination		
Theory Assignments				ester examination			
Lab Assignment & Viv	a		Viva				
		1					
Nature of assessment	:	CO 1	CO 2	C	20 3		
Sessional Examination		*	*				
Sessional Examination			*	*	:		
Assignment/Presenta	tion	*	*				
Laboratory examinati	on	*	* *				
	• End	End-Semester Feedback					
	1. "In	troductio	on to Linux – A Beginner's Guide", Machtelt				
	Ga	rrels					
	2. "U	nix shell p	rogramming", St	ephen G. Ko	ochan, Patrick H.		
	Wo	bod					
	3. "Se	ed & awk '	<i>",</i> Dale Dougherty"	, Arnold Ro	bbins "Programming		
	Pei	rl", Larry N	Wall, Tom Christiansen, Jon Orwant				

							Master of Engineering (ME) – VLSI Design						
								<u> </u>					
		2020 -	2021			F		, Semeste		ning on	plication		
					using	anv hig		language		ping ap	plication		
		This Co	ourse p	rovides				14118448					
		1.	The	concep	t of	softwar	e dev	elopmen	t proce	ess and	project		
			nagem						- p		[]		
			-		diffor					and around	project		
								-		and group			
		3.	Help	the st	udents	s to ur	ndersta	nd the	finer p	oints of	Project		
		ma	nagem	ent									
		4.	Bring	awaren	iess ab	out the	proces	ses, tools	and teo	chniques	involved		
		in t	he fiel	d of IT p	project	manage	ement.						
		On successful completion of this course, students will be able to											
		Practice the project development through project planning.											
		Unders	stand t	he finei	r points	s of Proj	ect mar	nagemen	t.				
		Bring awareness about the processes, tools and techniques involved in the							ed in the				
	field of IT project management.												
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11		
CO 1	,01	102	*	*	,05	100			105	1010	, 0 11		
					*				*				
CO 2			ste										
CO 3			*		*								

Content **Competencies** Understand the Project Needs, Create 1. Discussion on tools needed for project the Project Plan, Diagnosing Project management (C3) Planning Problems. U Elements of a Successful Estimate, 1. Download and demonstrate the tools Wideband Delphi Estimation, Other typically used for UML design. (C3) Estimation Techniques, Diagnosing Estimation Problems. 1. Design the application through the UML Building the Project Schedule, Managing Multiple Projects, Use the tool practiced (C4) Schedule 2. Develop the team with different roles to Manage Commitments, Diagnosing Scheduling assigned to each member - namely project Problems. manager, developer, tester and assign appropriate tasks (C4) Inspections, Deskchecks, 1. Develop basic set of programs and to Walkthroughs, Code Reviews, Pair illustrate the unit tests (C2) Programming, Use Inspections to Manage Commitments, Diagnosing **Review Problems.** Requirements Elicitation, Use Cases, 1. Field visit to develop and practice the Software Requirements Specification, requirement elicitation (C3) Change Control, Introduce Software

Requirements Carefully, Diagnosing	
Software Requirements Problems	
· · · · · · · · · · · · · · · · · · ·	
Review the Design, Version Control	1. Illustrate the key steps in design and
with Subversion, Refactoring, Unit	programming phase. Version control and unit
Testing, Use Automation, Be Careful	testing significance (C3)
with Existing Projects, Diagnosing	2. Review of various artefacts generated by
Design and Programming Problems	project and revise the project management
	methodology to the team (C5)
Test Plans and Test Cases, Test	1. Inter team testing set up based on
Execution, Defect Tracking and Triage,	requirement document(C5)
Test Environment and Performance	
Testing, Smoke Tests, Test	
ζ, ,	
Automation, Postmortem Reports,	
Using Software Testing Effectively,	
Diagnosing Software Testing Problems	
Why Change Fails, How to Make	1. Illustrate the necessity of Change
Change Succeed	management system – SVN hands on (C3).
Take Responsibility, Do Everything Out	1. Discussion on the topic with the help of
in the Open, Manage the Organization,	case study (C3)
Manage Your Team	
Prevent Major Sources of Project	
Failure, Management Issues in	2. Discussion on the topic with the help of
	case study (C3)

Outsourced Projects, Collaborate with				
the Vendor				
Life Without a Software Process,	1. Post-morte	em rep	ort generation	of
Software Process Improvement,	respective pro	ject by eac	ch team – reviev	v of
Moving Forward	the report and	suggest ar	eas of improvem	nent
	(C4)			
Learning strategy	Contact ho	ours	Student learnii	ng
			time (Hrs)	
Lecture	12		-	
Seminar	-		-	
Quiz	-		-	
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-		-	
Problem Based Learning (PBL)	-		-	
Case Based Learning (CBL)	03	03		
Clinic	-	-		
Practical	24	24		
Revision	03	03		
Assessment	06		-	
			I	
Internal practical Test		Sessional	examination	
Theory Assignments		End seme	ster examination	
Lab Assignment & Viva		Viva		

Nature of assessment	t	CO 1	CO 2	CO 3		
Sessional Examination	n 1	*	*			
Sessional Examination	n 2			*		
Assignment/Presenta	tion	*				
Laboratory Examinati	on	*	*	*		
	• End	l-Semester I	Feedback			
	1.	"Applie	d Software Project Ma	nagement" By Jennifer		
	Greene, Andrew Stellman (O'Reilly Publications) 2005.					
	2. "The Art of Project Management" By Scott Berkun (O					
	Publica	itions) 2005				

						Mast	er of En	gineerii	ng (ME) -	- VLSI De	sign		
2020-2021 First Year, Semester 2 Basic knowledge of digital design, Verilog HDL This Course provides insight on 1. The concept of generating netlist from the hardware description language 2. The concept of CAD tools for generating layout of a digital design 3. The concept of verifying the generated layout of a digital design On successful completion of this course, students will be able to Describe the floorplan, placement and routing of a digital design Apply the RC extraction procedure and back annotation for the layout Examine the correctness of the generation of layout by simulation Cos PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 Co1 * *			Physical Design Lab										
Basic knowledge of digital design, Verilog HDL This Course provides insight on 1. The concept of generating netlist from the hardware description language 2. The concept of CAD tools for generating layout of a digital design 3. The concept of verifying the generated layout of a digital design On successful completion of this course, students will be able to Describe the floorplan, placement and routing of a digital design Apply the RC extraction procedure and back annotation for the layout Examine the correctness of the generation of layout by simulation COs PO 1 PO 2 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 CO1 * *			EDA-610L										
HDL This Course provides insight on 1. The concept of generating netlist from the hardware description language 2. The concept of CAD tools for generating layout of a digital design 3. The concept of verifying the generated layout of a digital design 3. The concept of verifying the generated layout of a digital design On successful completion of this course, students will be able to Describe the floorplan, placement and routing of a digital design Apply the RC extraction procedure and back annotation for the layout Examine the correctness of the generation of layout by simulation Cos PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 Co1 * *			2020-2	2021			I						
This Course provides insight on 1. The concept of generating netlist from the hardware description language 2. The concept of CAD tools for generating layout of a digital design 3. The concept of verifying the generated layout of a digital design On successful completion of this course, students will be able to Describe the floorplan, placement and routing of a digital design Apply the RC extraction procedure and back annotation for the layout Examine the correctness of the generation of layout by simulation Cos PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 Co 1 * * * Co 3 * * * Content Competencies * <													
1. The concept of generating netlist from the hardware description language 2. The concept of CAD tools for generating layout of a digital design 3. The concept of verifying the generated layout of a digital design On successful completion of this course, students will be able to Describe the floorplan, placement and routing of a digital design Apply the RC extraction procedure and back annotation for the layout Examine the correctness of the generation of layout by simulation Cos PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 Co 1 * * * Co 1 * *													
2. The concept of CAD tools for generating layout of a digital design 3. The concept of verifying the generated layout of a digital design On successful completion of this course, students will be able to Describe the floorplan, placement and routing of a digital design Apply the RC extraction procedure and back annotation for the layout Examine the correctness of the generation of layout by simulation Cos PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 Co1 * *				•		-		t from t	ho hardı	wara daa	crintion	2001200	
3. The concept of verifying the generated layout of a digital design On successful completion of this course, students will be able to Describe the floorplan, placement and routing of a digital design Apply the RC extraction procedure and back annotation for the layout Examine the correctness of the generation of layout by simulation Cos PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 Co1 * * Image: State in the state													
On successful completion of this course, students will be able to Describe the floorplan, placement and routing of a digital design Apply the RC extraction procedure and back annotation for the layout Examine the correctness of the generation of layout by simulation COS PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 CO 1 * * * CO 2 * * CO 3 * * * <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td>_</td><td></td><td></td><td>_</td><td>_</td><td></td></t<>					-		_			_	_		
Describe the floorplan, placement and routing of a digital design Apply the RC extraction procedure and back annotation for the layout Examine the correctness of the generation of layout by simulation COS PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 CO1 * * I * I <td></td> <td></td> <td>3. The</td> <td>e conce</td> <td>pt of v</td> <td>erifyin</td> <td>g the ge</td> <td>nerated</td> <td>l layout c</td> <td>of a digita</td> <td>al design</td> <td></td>			3. The	e conce	pt of v	erifyin	g the ge	nerated	l layout c	of a digita	al design		
Apply the RC extraction procedure and back annotation for the layout Examine the correctness of the generation of layout by simulation COS PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 CO 1 * * * PO 10 PO 11 CO 1 * * *		On successful completion of this course, students will be able to											
Examine the correctness of the generation of layout by simulation Cos PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 Colspan="6">Image: Second Secon			Descrit	be the f	loorpla	in, plac	ementa	and rout	ting of a	digital de	esign		
COS PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 CO 1 * * * <td></td> <td></td> <td>Apply t</td> <td>he RC e</td> <td>extract</td> <td>ion pro</td> <td>cedure</td> <td>and bac</td> <td>k annota</td> <td>tion for</td> <td>the layou</td> <td>t</td>			Apply t	he RC e	extract	ion pro	cedure	and bac	k annota	tion for	the layou	t	
COS PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 CO 1 * * * <td></td> <td></td> <td>Examir</td> <td>ne the c</td> <td>orrect</td> <td>ness of</td> <td>the gen</td> <td>eration</td> <td>of lavou</td> <td>t by simu</td> <td>lation</td> <td></td>			Examir	ne the c	orrect	ness of	the gen	eration	of lavou	t by simu	lation		
CO 2 * CO 3 * * * Content Content Content Content Content Describe synthesis and placement tools for digital	COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	
CO 2 * CO 3 * * * Content Content Content Content Content Describe synthesis and placement tools for digital	CO 1	*	*				*						
CO 3 * CO 3 * <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		*				*							
Content Competencies ntroduction to logic synthesis - 1 Describe synthesis and placement tools for digital			*	*				*					
ntroduction to logic synthesis - 1 Describe synthesis and placement tools for digital	03												
ntroduction to logic synthesis - 1 Describe synthesis and placement tools for digital													
	Conter	nt					Compet	encies					
	Introd	uction t	o logic	synthes	sis - 1		Describe	synthe	sis and n	lacemer	it tools fo	or digital	
			0 10 510		,,,, 1			-				. orbital	
							0		- • (,			

Introduction to logic synthesis - 2	Apply HDL to generate netlist with the design					
	library and constraints (C3)					
Placement, Routing and Extraction	Use CAD tools to perform p	lacement routing				
		lacement, routing,				
	and extraction (C3)					
Back annotation	Examine the correctness of	the implementation				
	using design rule check, lay	out versus schematic				
	check and simulation proce	dure (C4)				
Dhysical Synthesis 1	Developing the physical dee	tion and synthesis for				
Physical Synthesis - 1	Developing the physical design					
	digital combinational design	15 (C4)				
Physical Synthesis - 2	Developing the physical design and synthesis for					
	digital sequential designs (C	24)				
Learning strategy	Contact hours	Student learning				
		time (Hrs)				
Lecture	12	-				
Seminar	-	-				
Quiz	-	-				
Small Group Discussion (SGD)	-	-				
Self-directed learning (SDL)	-	-				
Problem Based Learning (PBL)	-	-				
Case Based Learning (CBL)	03	-				
Clinic	-	-				
Practical	24	-				
Revision	03 -					
Assessment	06	-				

Internal practical Test			Sessior	nal examination			
Theory Assignments			End se	mester examination			
Lab Assignment & Viva			Viva				
Nature of assessment	CO 1	CO 2		CO 3			
Sessional Examination 1	*	*					
Sessional Examination 2		*		*			
Assignment/Presentation				*			
Laboratory Examination	*	*		*			
•	End-Semeste	er Feedback					
IEEE Standard for Standard SystemC [®] Language Reference N							
by IEEE Computer Society							
• SystemC: From the Ground Up by David C. Black, Jack Donovan							
Bill Bunton, Anna Keist							

					Mast	ter of Er	ngineeri	ng (ME) -	- VLSI De	esign		
					Adva	Advanced Logic Synthesis Lab						
		EDA-611	L									
		2020-2	2021					r, Semeste				
		Basic knowledge of digital design, Ve										
		HDL This Course provides insight on										
		inis Co			-							
		1.	The co	ncept o	fgenera	ating net	list from	the hard	ware des	cription la	inguage	
		2.	The us	e of CAI	D tools f	for genei	rating ne	tlist from	a digital	design		
		3.	The co	ncept o	f netlis	t simulat	ion with	timing de	lay infor	mation		
								udents w				
		Descril	be the	library	and c	onstrair	t files	required	for synt	hesis of	a digital	
		design										
		Apply	he CAI	D tools	for gen	erating	the net	list				
		Examir	ne the	timing,	power	, and a	rea repo	orts after	the syn	thesis al	ong with	
		simula	tion									
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	
CO 1	*	*				*						
CO 2	*		*		*							
CO 3	*		*									
	1	1	1	1			1		1			
Conter	nt					Compet	encies					

Introduction to CAD tools for logic		alle a la la Cala			
synthesis - 1	Describe synthesis process synthesis tools for				
	digital design implementation	n (C2)			
Introduction to logic synthesis - 2	Apply HDL to generate netlist	with the design			
	library and constraints (C3)				
Synthesis of combinational circuits	Use CAD tools to perform syr	othesis of digital			
	combinational circuits (C3)				
Synthesis of sequential circuits					
	Use CAD tools to perform synthesis of digital				
	sequential circuits (C3)				
Synthesis verification - 1	Examine the correctness of the	a implementation			
	using netlist generation and reports generated				
	for constraints of combinational circuits (C4)				
Synthesis verification - 2	Examine the correctness of the	ne implementation			
	using netlist generation and reports generated				
	for constraints of sequential circuits (C4)				
Learning strategy	Contact hours	Student learning			
		time (Hrs)			
Lecture	12	-			
Seminar	-	-			
Quiz		-			

Small Group Discussion	on (SGD)		-		-
Self-directed learning	Self-directed learning (SDL)				-
Problem Based Learni	ing (PBL)		-		-
Case Based Learning (CBL)		03		-
Clinic			-		-
Practical			24		-
Revision			03		-
Assessment			06		-
Internal practical Test	:			Sessiona	l examination
Theory Assignments			End semester examination		
Lab Assignment & Viva			Viva		
Nature of assessment	:	CO 1	CO 2	(CO 3
Sessional Examinatior	1 1		*	k	*
Assignment/Presenta	tion		*	k	*
Laboratory Examination	on	*	*	k	k
	• End	-Semester	Feedback		
	 Switching and Finite Automata Theory by Zvi Kohavi and Niraj K Jha IEEE Standard Verilog[®] Hardware Description Language by IEEI Computer Society 				

						aster of Engineering (ME) – VLSI Design ireless Communications and Antenna Design Lab					
		EDA-613	3L							0	
		2020-2	2021			F	irst Yea	r, Semeste	er 2		
							Basic k	nowledge	e of progr	amming	
		This co	urse pr	ovides	insight	on					
		The co	ncept c	of wire	less cor	nmunic	ation				
		The co	ncept c	of digit	al mod	ulation	and mo	dulation	domain a	analysis	
		The co	oncept	of effe	ects of	filters	in wirel	less com	municat	ion syste	ems and
		investi	gation	of var	ious pi	ulse sha	aping fi	lters and	d wirel	ess chan	nel and
		channe	el impa	ct in wi	reless o	commur	nication				
		On suc	cessful	comple	etion o	f this co	urse, st	udents w	vill be ab	e to	
		Descrit	oe Matl	ab for	wireles	s comm	unicatio	on			
		Apply	Matlab	for di	gital mo	odulatic	n and n	nodulatio	on domai	in analysi	S
		Examir	ne effe	cts of fi	ilters ar	nd char	inel imp	act in wi	reless co	mmunica	ation
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1						*					
CO 2					*						
CO 3							*				
	<u> </u>										
Conte	nt				(Compet	encies				

[
Introduction to Matlab Toolbox and	Describe Matlab tools for wireless			
Simulink	communication (C2)			
Introduction to RF system-level	Apply Model and Simulate for	r Wireless Systems		
simulation of wireless transceivers - 1	(C3)			
Wireless transceivers - 1	Use Matlab tools to design ar	nd implement		
	wireless transceivers (C3)			
Wireless transceivers - 2	Examine simulation for correc	ctness of wireless		
	transceivers (C3)			
Design of Zigbee receiver - 1	Use Matlab tools to implement Zigbee receiver			
	(C3)			
Design of Zickee accession 2	[
Design of Zigbee receiver - 2	Examine simulation for correc	ctness receivers (C3)		
Learning strategy	Contact hours	Student learning		
		time (Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
		1		

Case Based Learnin	g (CBL)		03		-	
Clinic		-		-		
Practical			24		-	
Revision			03		-	
Assessment			06		-	
Internal practical Test				Session	al examination	
Theory Assignments				End semester examination		
Lab Assignment & Viva				Viva		
Nature of assessment	CC	01	CO 2		CO 3	
Sessional Examination 1	*		*			
Assignment/Presentation					*	
Laboratory Examination	*		*		*	
•	End-Se	mester I	eedback			
• (Garg, V., 20	010. Wire	eless communi	cations &	networking. Elsevier.	
• (Cho, Y.S., K	(im, J., Y	ang, W.Y. and	Kang, C.C	G., 2010. MIMO-OFDM	
	wireless co	ommunic	cations with MA	ATLAB. Jo	hn Wiley & Sons.	

				Maste	er of Eng	ineering	g (ME) – V	LSI Desigi	า	
				-			VLSI Desig	-		
	EDA-614	۱L						-		
	2020-2021First Year, Semester 2									
	Basics of Programming									
	This co	urse pr	ovides	insight	on					
	•	Machi	ne lea	rning,	applica	ations,	techniqu	ies, des	sign issu	ies and
		approa	aches t	o mach	ine lear	ning			-	
	•	Funda	mental	knowle	edge ab	out con	cept lear	ning, hy	pothesis	and bias
	On successful completion of this course, students will be able to									
	Identify the software and tools for designing machine-learning applications.									
	Apply concept learning and hypothesis space.									
	Demonstrate Artificial Neural Network, Clustering, Support Vector Machine,									
	Deep Neural Network and Reinforcement Learning models, Support Vector									
	Machine									
COs PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1					*					
CO 2				*						
CO 3						*				
	I	I	L	I	I	I	I	I	I	I
Content				(Compet	encies				
Goals and applications of machine1. Identify programming environmelearningavailable for the machine learning (C1)										

2. Classify the pros and cons of various
environments for ML coding (C2)
 Design a machine learning model to get a Maximally Specific Hypothesis for the given training examples (C5). Construct a machine learning model to obtain most general and most specific hypotheses for the given training examples (C5)
 Design a machine learning model using Bayes learning (C5). Develop a machine learning classifier models using different approach (C5) Design Bayes nets and Markov nets for representing dependencies (C5)
 Demonstrate activation functions, weights and threshold units in artificial neural networks (C3) Demonstrate ANN models (C3) Design of ANN models for classification (C5) Analyse the performance issues (C4)

Multilayer networks and back	
propagation.	
Overfitting.	
Learning from unclassified data.	1. Demonstrate various clustering models in
Clustering.	machine learning (C3)
Hierarchical Aglomerative Clustering.	2. Design different types of clusters (C5)
Non-Hierarchical Clustering - k-means	3. Analyse the performance of clustering
partitional clustering.	techniques on different data (C4)
Expectation maximization (EM) for soft	4. Apply clustering techniques for data
clustering.	analysis. (C3)
Semi-supervised learning with EM	
using labeled and unlabled data.	
Maximum margin linear separators.	1. Demonstrate Maximum margin linear
Quadractic programming solution to	separators. (C3)
finding maximum margin separators.	2. Design SVM classifiers (C5)
Kernels for learning non-linear	3. Analyse the performance of SVM (C4)
functions.	
Varying length pattern classification	
using SVM	
Learning strategy	Contact hours Student learning
	time (Hrs)
Lecture	12 -
Seminar	
Quiz	
Small Group Discussion (SGD)	
Self-directed learning (SDL)	

-

-

Problem Based Learning (PBL)

Case Based Learning (CBL)		03		-	
Clinic		-		-	
Practical		24		-	
Revision		03		-	
Assessment		06		-	
			-		
Internal practical Test			Sessiona	al examination	
Theory Assignments			End sem	ester examination	
Lab Assignment & Viva			Viva		
Nature of assessment	CO 1	CO 2		CO 3	
Sessional Examination 1	*	*			
Assignment/Presentation				*	
Laboratory Examination	*	*		*	
• En	d-Semeste	r Feedback			
1. Machi	ne Learnin	g, T. Mitchell, M	cGraw-Hill	l, 1997	
2. Machir	ne Learning	g, E. Alpaydin, M	IT Press, 2	010	
3. Machir	ne Learnin _ễ	g for Big Data, Ja	son Bell, V	Viley Big Data Series	

`

				Maste	er of Eng	ineering	; (ME) – VL	SI Desigr	۱			
				Entre	preneur	ship Lab						
	ENP-601											
	2020 -	2020 - 2021 First Year, Semester 2										
	This Co	ourse p	rovidos	insight	on							
				-			ć					
	This co	ourse ir	ntroduc	ces stud	dents to	o the th	eory of e	entrepre	neurship	and its		
	practio	al imp	lement	ation.	It focu	ses on	different	stages	related	to the		
	entrep	entrepreneurial process, including business model innovation, monetization										
	small k	small business management as well as strategies that improve performance										
	of new	of new business ventures. Cantered on a mixture of theoretical exploration as										
	well as	well as case studies of real-world examples and guest lectures, students will										
	develo	develop an understanding of successes, opportunities and risks of										
	entrepreneurship. This course has an interdisciplinary approach and is											
	therefore open to students from other Majors.											
	On successful completion of this course, students will be able to											
	Under	Understand the concept of entrepreneurship To appraise the entrepreneurial process starting with pre-venture stage										
	То ар											
		h grou					_					
	To Bui	ld a mi	nd-set	focusin	g on de	velopin	g novel ar	nd uniqu	le approa	aches to		
	marke	t oppo	ortunitie	es by	conside	ring ca	se studie	es and	understa	and the		
	comple	ete flov	v of ent	repren	eurship							
COs PO	1 PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10	PO 11		
CO 1 *					*		*					

*

*

*

CO 2

CO 3

Content	Competencies
Meaning and Definition of	1. Discuss the theories of Entrepreneurship
Entrepreneurship-Employment vs	(C1)
Entrepreneurship, Theories of	2. Discuss the approaches to
Entrepreneurship, approach to	Entrepreneurship (C1)
entrepreneurship, Entrepreneurs VS	
Manager	
Factors affecting Entrepreneurship	1. Exemplify one's capabilities in relation to
process	the rigors of successful ventures (C3)
	2. Identify and differentiates the different
	characteristics and competencies of an
	entrepreneurs (C2)
Points to be considered, Model	1. Identify different business models (C3)
Business plan	Describe different parts of a business plan(C2)
Indian and International	1. Perform self-assessment and analyse
Entrepreneurship	entrepreneurial personal traits and
	competencies (C4)
	2. Evaluate oneself and plan courses of action
	to help develop one's entrepreneurial
	characteristics and competencies. (C5)

(Deemed to be University under Section 3 of the UGC Act, 1956)

Learning strategy		Contact hour	-s	Student learning		
				time (Hrs)		
Lecture		12		-		
Seminar		-		-		
Quiz		-		-		
Small Group Discussion (SGD)		-		-		
Self-directed learning (SDL)		-		-		
Problem Based Learning (PBL)		-		-		
Case Based Learning (CBL)		03		-		
Clinic		-		-		
Practical		24		-		
Revision		03		-		
Assessment		06		-		
Internal practical Test			Sessio	nal examination		
Theory Assignments			End se	mester examination		
Lab Assignment & Viva			Viva			
Nature of assessment	CO 1	CO 2		CO 3		
Sessional Examination 1	*	*				
Sessional Examination 2				*		
Assignment/Presentation		*		*		
Laboratory Examination	*	*		*		
• F	nd-Semest	ter Feedback		I		

1.	NVR Naidu and T. Krishna Rao, "Management and								
	Entrepreneurship", IK International Publishing House Pvt. Ltd								
	2008.								
2.	Mohanthy Sangram Keshari, "Fundamentals of								
	Entrepreneurship", PHI Publications, 2005								
3.	Butler, D. (2006). Enterprise planning and development. USA:								
	Elsevier Ltd. Gerber, M.E. (2008) Awakening the entrepreneur								
	within. NY: Harper Collins.								

Studen area o / softv On suc Apply with a Breako work t Compo and bl Evalua	- 2021 nts are o of their s ware or ccessful the objoint detaile down the to be re	both ir both ir l compl ectives ed litera he pro produc rdware gram results	basic ed to se zation t n a sem letion o of the p ature su oject in ced by a	elect a p chat wo ester of this co project urvey to sub an indep	First Year, Any roblem in uld requi ourse, stu work and blocks w pendent	n the are re an imp udents w d provide rith suffic researche	ming la a of the olement ill be ab an adeo cient de er	nguage an ir interest ation in h de to quate bac etails to a	t and the hardware ckground
2020 Studen area o / softv On suc Apply with a Breako work t Compo and bl Evalua	- 2021 nts are o of their s ware or ccessful the objo detaile down the down the to be re ose har lock dia	both ir both ir l compl ectives ed litera he pro produc rdware gram results	ed to se zation t n a sem letion o of the p ature su oject in ced by a	elect a p chat wo ester of this co project urvey to sub an indep	Any roblem in uld requi ourse, stu work and blocks w pendent	program n the are re an imp udents w d provide rith suffic research	ming la a of the olement ill be ab an adeo cient de er	ir interest ation in h le to quate bac	t and the hardware ckground
Studen area o / softv On suc Apply with a Breako work t Compo and bl Evalua	nts are o of their s ware or ccessful the objo detaile down the down the cose han lock dia ate the n	both ir both ir l compl ectives ed litera he pro produc rdware gram results	ed to se zation t n a sem letion o of the p ature su oject in ced by a	elect a p chat wo ester of this co project urvey to sub an indep	Any roblem in uld requi ourse, stu work and blocks w pendent	program n the are re an imp udents w d provide rith suffic research	ming la a of the olement ill be ab an adeo cient de er	ir interest ation in h le to quate bac	t and the hardware ckground
area o / softv On suc Apply with a Breako work t Compo and bl Evalua	of their s ware or ccessful the objut down the down the d	both ir both ir l compl ectives ed litera he pro produc rdware gram results	ed to se zation t n a sem letion o of the p ature su oject in ced by a	elect a p that wo ester of this co project urvey to sub an indep	roblem i uld requi ourse, stu work and blocks w	n the are re an imp udents w d provide rith suffic researche	a of the olement ill be ab an adeo cient de er	ir interest ation in h le to quate bac	t and the hardware ckground
area o / softv On suc Apply with a Breako work t Compo and bl Evalua	of their s ware or ccessful the objut down the down the d	both ir both ir l compl ectives ed litera he pro produc rdware gram results	ed to se zation t n a sem letion o of the p ature su oject in ced by a	elect a p that wo ester of this co project urvey to sub an indep	uld requi ourse, stu work and blocks w	re an imp udents w d provide rith suffic research	ill be ab an adeo cient de	ation in h le to quate bac	hardware
area o / softv On suc Apply with a Breako work t Compo and bl Evalua	of their s ware or ccessful the objut down the down the d	both ir both ir l compl ectives ed litera he pro produc rdware gram results	zation t n a sem letion o of the p ature su oject in ced by a	that wo ester of this co project urvey to sub an indep	uld requi ourse, stu work and blocks w	re an imp udents w d provide rith suffic research	ill be ab an adeo cient de	ation in h le to quate bac	hardware
/ softv On suc Apply with a Breakc work t Compo and bl Evalua	ware or ccessful the obju detaile down the down the to be re ose hau lock dia	both ir I compl ectives ed litera he pro produc rdware gram results	of the pature subject in a sem	ester of this co project urvey to sub an indep	burse, stu work and blocks w	udents w d provide vith suffic researche	ill be ab an adeo cient de er	le to quate bac stails to a	ckground
On suc Apply with a Breake work t Compo and bl Evalua	ccessful the obju detaile down the to be re ose hau lock dia	l compl ectives ed litera he produc rdware gram results	of the pature subject in a	of this co project urvey to sub an indep	work and blocks w pendent	d provide vith suffic researche	an adeo cient de er	quate bac tails to a	illow the
Apply with a Breako work t Compo and bl Evalua	the obj detaile down tl to be re ose han lock dia	ectives ed litera he pro produc rdware gram results	of the p ature su bject in ced by a	project urvey to sub an indep	work and blocks w pendent	d provide vith suffic researche	an adeo cient de er	quate bac tails to a	illow the
with a Breako work t Compo and bl Evalua	detaile down tl to be re ose hai lock dia	ed litera he pro produc rdware gram results	ature su oject in ced by a	urvey to sub an inder	blocks w pendent	rith suffic	cient de er	tails to a	illow the
Breako work t Compo and bl Evalua	down tl to be re ose hai lock dia ate the i	he pro produc rdware gram results	oject in ced by a	to sub an inder	pendent	research	er		
work t Compo and bl Evalua	to be re ose hai lock dia ate the i	produc rdware gram results	ced by a	an inder	pendent	research	er		
work t Compo and bl Evalua	to be re ose hai lock dia ate the i	produc rdware gram results	ced by a	an inder	pendent	research	er		
and bl Evalua	lock dia	gram results	/softwa	are des	ign, algc	orithms,	flowcha	irt, meth	odology,
Evalua	ate the i	results							
Summ	narize th								
1		ne work	< carrie	d out					
PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
		*							
			*			*			
ļ		ļ		ļ			ļ		<u> </u>
					*			*	
				*					*
					*				
				Compe					
-								Image: Second	Image: Second

	be University under Section 3 of the UGC Act, 1956)					
Problem identification, synops		e to:				
submission, status submission, mi	1. Identify the problem/specification (C1)					
evaluation.	2. Discuss the project (C2)					
	3. Prepare the outline (C3)					
	4. Describe the status of the project (C2)					
	5. Prepare a mid-term project present	ation				
	report (C3)					
	6. Prepare and present mid-term pr	oject				
	presentation slides (C3, C5)					
	7. Develop project implementation	in				
	hardware/software or both in chosen plat	form				
	(C5)					
Status submission, final evaluation.	1. Prepare the progress report (C3)					
	2. Prepare the final project presentation re	eport				
	(C3)					
	3. Prepare and present final project present	ation				
	slides (C3, C5)					
	4. Modify and Develop implementation	n in				
	hardware/software or both in chosen plat	form				
	(C3, C5)					
	5. Justify the methods used and obtained re	esults				
	(C6)					
Learning strategy	Contact hours Student lea	rning				
	time (Hrs)					
Lecture		-				
Seminar						
Quiz						
Small Group Discussion (SGD)	48 -					

Self-directed learning	(SDL)		-			-		
Problem Based Learn	ing (PBL)		-		-			
Case Based Learning		-			-			
Clinic		-		-				
Practical			-		-			
Revision			-			-		
Assessment			03			-		
Project Problem Selec	ction				Mid-Term	Presentation		
Synopsys review					Second st	atus review		
First status review					Demo & Final Presentation			
Nature of assessment	CO 2	CO 3	CO 4	CO 5				
Mid Presentation *			*					
Presentation		*	*	*	*	*		
	• End	I-Semes	ter Feedb	ack				
	Particular t	o the cl	nosen pro	ject				

					Mast	er of Er	ngineerii	ng (ME) -	- VLSI De	esign		
					Semi	nar - 2						
	:	EDA 698	8									
		2020 -	2021			F		, Semeste				
								nunicatio	n Skill			
		1. To	select,	search	and lea	arn tech	nical lite	erature.				
		2. То	Identify	y a curr	ent an	d releva	int resea	arch topi	с.			
		3. То	prepar	e a top	ic and o	deliver a	a presen	tation.				
		4. To	develo	p the s	kill to w	vrite a t	echnical	report.				
		5. Dev	velop a	bility to	o work	in grou	os to rev	view and	modify	technical	content.	
		On suc	cessful	compl	etion o	f this cc	ourse, st	udents w	vill be ab	le to		
		Show c	ompet	ence in	identif	fying rel	evant in	formatic	on, defin	ing and e	xplaining	
		topics under discussion.Show competence in working with a methodology, structuring their oral worand synthesizing information.										
		Use appropriate registers and vocabulary, and will demonstrate comman										
		voice modulation, voice projection, and pacing.										
		Demonstrate that they have paid close attention to what others say and carries respond constructively.										
		-			-	h nres	ent inf	ormation	nina	comnellir	ng, well-	
						•					ng ideas,	
				-			•		-		ability to	
			•		-		informa				usincy to	
		Synthe	5120,00	anduce								
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	
CO 1	*							*	*		*	
CO 2	*							*	*		*	
CO 3	*							*	*		*	

CO 4	*							*	*			*		
CO5:	*							*	*			*		
Learnir	ng strat	egy				Conta	ct hours			Student learning				
<u> </u>											ne (Hrs)			
Lectur										-				
Semina	ar					-				-				
Quiz						-				-				
Small (Group [Discussi	on (SGE))		14				-				
Self-di	rected	earning	g (SDL)			-				-				
Proble	m Base	d Learn	ing (PB	L)		-				-				
Case B	ased Le	arning	(CBL)			-				-				
Clinic						-			-					
Practic	al					-				-				
Revisio	n					-				-				
Assess	ment					-					-			
Semina	ar Topio	Select	ion											
Synops	sys revi	ew												
PPT Re	view													
Nature	e of asse	essmen	t		CO 1	CO 2	СО	CO 4			CO 5			
							3							
Presen	tation				*	*	*	*		*				
			•	End	-Semest	er Feed	back							
			Partic	ular t	o the ch	osen Se	minar							

					Mas	ter of Ei	ngineerin	g (ME) –	VLSI De	esign					
					Proje	ect Work	<u> </u>								
	:	BDA 79													
		2020	- 2021			Second Year, Semester 3, 4									
		SDLC, Communication Skills, technical skills. The project work aims to challenge analytical, creative ability and to allow													
		ine pi	roject v	vork ai	ms to	challen	ge analyt	ical, crea	ative ab	ollity and	to allow				
		students to synthesize, apply the expertise and insight learned in the core													
		discipline.													
		Students build self-confidence, demonstrate independence, and develop professionalism on successfully completion of the project.													
		On suc	On successful completion of this course, students will be able to												
		To be acquainted with working environment and processes that in place at													
		the re	levant I	ndustri	ies.	·S.									
		To familiarize the challenges as relevant professionals.													
		Review	v the lit	eratur	e and c	levelop	solutions for real time onboard projects.								
		Write	technic	al repo	ort and	deliver	presenta	tion.							
		Apply	engine	ering a	nd mar	nageme	nt princip	les to ac	hieve p	roject go	al.				
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11				
CO 1						*	*	*	*	*	*				
CO 2					*										
CO 3	*	*	*	*	*										
CO 4	*	*	*	*					1						
CO5:						*	*	*	*	*	*				
	·		<u> </u>	·	ı	- 1	• 		•						
Content						Competencies									

NSPIRED BY LIFE (Deemed to be University under Section 3 of the UGC Act, 1956)

Problem identification, synopsis	At the end of the topic student should be able to:							
submission, status submission, mid	1. Identify the problem/specification (C1)							
evaluation.	2. Discuss the project (C2)							
	3. Prepare the outline (C3)							
	4. Prepare a mid-term project presentation							
	report (C3)							
	5. Prepare and present mid-term project							
	presentation slides (C5)							
	6. Develop project implementation in							
	hardware/software or both in chosen platform							
	(C5)							
Status submission, final evaluation.	1. Prepare the progress report (C3)							
	2. Prepare the final project presentation report							
	(C3)							
	 Prepare and present final project presentation 							
	slides (C5)							
	4. Modify and Develop implementation in							
	hardware/software or both in chosen platform							
	(C5)							
	5. Justify the methods used and obtained results							
	(C6)							
Learning strategy	Contact hours Student learning							
	time (Hrs)							
Lecture								
Seminar								
Quiz								
Small Group Discussion (SGD)								

Self-directed learning		-			-			
Problem Based Learn	ing (PBL)		-			-		
Case Based Learning		-			-			
Clinic			-			-		
Practical			-			-		
Revision			-			-		
Assessment			-			-		
Project Problem Selec	ction				Mid-Term	Presentation		
Synopsys review					atus review			
First status review					Demo & F	inal Presentation		
Nature of assessment	t	CO 1	CO 2	CO 3	CO 4	CO 5		
Mid Presentation	*	*						
Presentation	*	*	*	*				
	• End	I-Semes	ter Feedb	ack				
	Particular t	o the cl	nosen pro	ject				

PROGRAM OUTCOMES (POS) AND COURSE OUTCMES (COS) MAPPING

SI.No.	Course Code	Course Name	Credits	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
1	CSE 606	Data Structures	3	*	*		*		*					
2	EDA 601	High Level Digital Design	3	*	*	*								
3	EDA 602	Digital Systems & VLSI Design	3	*	*	*	*							
4	EDA 603	Verification	3	*	*	*	*							
5	EDA-608	System on Chip Design	3	*	*	*								
6	EDA-609	CAD for VLSI	3	*	*	*	*	*						
7	ESD-603	Digital Signal Processing	3	*	*	*	*	*						
8	CSE 606L	Data Structures Lab	1		*	*		*			*			
7	EDA 601L	High Level Digital Design Lab	1	*	*	*		*						
8	EDA 602L	Digital Systems & VLSI Design Lab	1	*	*	*		*						
9	EDA 603L	Verification Lab	1	*	*	*	*	*						
10	EDA-608L	System on Chip Design Lab	1	*	*			*	*	*				
11	EDA-609L	CAD for VLSI Lab	1	*	*	*	*	*						
12	ESD-603L	Digital Signal Processing Lab	1	*	*		*	*						
13	EDA 695	Mini Project - 1	4				*	*	*	*	*		*	*
14	EDA 697	Seminar - 1	1	*							*	*		*
15	EDA 604	Advanced VLSI Design	3	*	*	*								

(Deemed to be University under Section 3 of the UGC Act, 1956)

16	EDA 605	Low Power VLSI Design	3	*	*	*	*	*						
17	EDA 606	Universal Verification Methodology	3	*	*	*								
18	EDA 607	Scripting for VLSI	3	*	*	*	*							
19	CSE-631	IT Project Management	3	*	*	*								
20	EDA-610	Physical Design	3	*	*	*								
21	EDA-611	Advanced Logic Synthesis	3	*	*	*								
22	EDA-613	Wireless Communications and Antenna Design	3	*	*	*	*							
23	EDA-614	Machine Learning for VLSI Design	3	*	*	*	*							
24	ENP-601	Entrepreneurship	3	*		*	*		*		*		*	
25	EDA 604L	Advanced VLSI Design Lab	1	*	*		*	*	*					
26	EDA 605L	Low Power VLSI Design Lab	1	*	*	*	*	*						
27	EDA 606L	Universal Verification Methodology Lab	1	*	*	*		*						
28	EDA 607L	Scripting for VLSI Lab	1	*		*		*						
29	CSE-631L	IT Project Management Lab	1			*	*	*				*		
30	EDA-610L	Physical Design Lab	1	*	*	*		*	*		*			
31	EDA-611L	Advanced Logic Synthesis Lab	1	*	*	*		*	*					
32	EDA-613L	Wireless Communications and Antenna Design Lab	1					*	*	*				

33		Machine Learning for VLSI Design Lab	1					*	*	*				
34		Entrepreneurship Lab	1	*					*	*	*		*	
35	EDA 696	Mini Project - 2	4				*	*	*	*	*		*	*
36	EDA 698	Seminar - 2	1	*							*	*		*
37	EDA 799	Project Work	25	*	*	*	*	*	*	*	*	*	*	*